Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Trager is active.

Publication


Featured researches published by Scott Trager.


Proceedings of SPIE | 2014

The 4MOST instrument concept overview

Roger Haynes; Samuel C. Barden; Roelof S. de Jong; Olivier Schnurr; Olga Bellido; Jakob Walcher; Dionne M. Haynes; R. Winkler; Svend-Marian Bauer; Frank Dionies; Allar Saviauk; Cristina Chiappini; A. D. Schwope; Joar Brynnel; Matthias Steinmetz; Richard McMahon; Sofia Feltzing; Patrick Francois; Scott Trager; Ian R. Parry; M. J. Irwin; Nicholas A. Walton; David A. King; David Sun; Eduaro Gonzalez-Solares; Ian Tosh; Gavin Dalton; Kevin Middleton; P. Bonifacio; Pascal Jagourel

The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.


Archive | 2012

Proceedings of the SPIE

Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; Christopher H. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.


Monthly Notices of the Royal Astronomical Society | 2012

The ATLAS3D project - XIII. Mass and morphology of H I in early-type galaxies as a function of environment

Paolo Serra; Tom Oosterloo; Raffaella Morganti; Katherine Alatalo; Leo Blitz; Maxime Bois; Frédéric Bournaud; Martin Bureau; Michele Cappellari; Alison F. Crocker; Roger L. Davies; Timothy A. Davis; P. T. de Zeeuw; Pierre-Alain Duc; Eric Emsellem; Sadegh Khochfar; Davor Krajnović; Harald Kuntschner; Pierre-Yves Lablanche; Richard M. McDermid; Thorsten Naab; Marc Sarzi; Nicholas Scott; Scott Trager; Anne-Marie Weijmans; Lisa M. Young

We present the ATLAS3D H i survey of a volume-limited, complete sample of 166 nearby early-type galaxies (ETGs) brighter than MK=-21.5. The survey is mostly based on data taken with the Westerbork Synthesis Radio Telescope, which enables us to detect H i down to 5 x 1065 x 107 M? within the survey volume. We detect similar to 40 per cent of all ETGs outside the Virgo galaxy cluster and similar to 10 per cent of all ETGs inside it. This demonstrates that it is common for non-cluster ETGs to host H i. The morphology of the detected gas varies in a continuous way from regular, settled H i discs and rings to unsettled gas distributions (including tidal or accretion tails) and systems of clouds scattered around the galaxy. The majority of the detections consist of H i discs or rings (1/4 of all ETGs outside Virgo) so that if H i is detected in an ETG it is most likely distributed on a settled configuration. These systems come in two main types: small discs [ M?], which are confined within the stellar body and share the same kinematics of the stars; and large discs/rings [M(H i) up to 5 x 109 M?], which extend to tens of kpc from the host galaxy and are in half of the cases kinematically decoupled from the stars. Neutral hydrogen seems to provide material for star formation in ETGs. Galaxies containing H i within similar to 1Re exhibit signatures of on-going star formation in similar to 70 per cent of the cases, approximately five times more frequently than galaxies without central H i. The interstellar medium (ISM) in the centre of these galaxies is dominated by molecular gas, and in ETGs with a small gas disc the conversion of H i into H2 is as efficient as in spirals. The ETG H i mass function is characterized by M*similar to 2 x 109 M? and by a slope a similar to-0.7. Compared to spirals, ETGs host much less H i as a family. However, a significant fraction of all ETGs are as H i-rich as spiral galaxies. The main difference between ETGs and spirals is that the former lack the high-column-density H i typical of the bright stellar disc of the latter. The ETG H i properties vary with environment density in a more continuous way than suggested by the known Virgo versus non-Virgo dichotomy. We find an envelope of decreasing M(H i) and M(H i)/LK with increasing environment density. The gas-richest galaxies live in the poorest environments (as found also with CO observations), where the detection rate of star formation signatures is higher. Galaxies in the centre of Virgo have the lowest H i content, while galaxies at the outskirts of Virgo represent a transition region and can contain significant amounts of H i, indicating that at least a fraction of them has joined the cluster only recently after pre-processing in groups. Finally, we find an H i morphologydensity relation such that at low environment density (measured on a local scale) the detected H i is mostly distributed on large, regular discs and rings, while more disturbed H i morphologies dominate environment densities typical of rich groups. This confirms the importance of processes occurring on a galaxy-group scale for the evolution of ETGs.


Astronomy and Astrophysics | 2012

CALIFA, the Calar Alto Legacy Integral Field Area survey

B. Husemann; Knud Jahnke; S. F. Sánchez; D. Barrado; S. Bekeraite; D. J. Bomans; A. Castillo-Morales; Cristina Catalán-Torrecilla; R. Cid Fernandes; J. Falcón-Barroso; R. García-Benito; R. M. González Delgado; J. Iglesias-Páramo; Benjamin D. Johnson; D. Kupko; R. Lopez-Fernandez; Mariya Lyubenova; R. A. Marino; D. Mast; Arpad Miskolczi; A. Monreal-Ibero; A. Gil de Paz; Enrique Pérez; Isabel Pérez; F. F. Rosales-Ortega; T. Ruiz-Lara; U. Schilling; G. van de Ven; J. Walcher; J. Alves

We present the Calar Alto Legacy Integral Field Area survey (CALIFA). CALIFAs main aim is to obtain spatially resolved spectroscopic information for ~600 galaxies of all Hubble types in the Local Universe (0.005< z <0.03). The survey has been designed to allow three key measurements to be made: (a) Two-dimensional maps of stellar populations (star formation histories, chemical elements); (b) The distribution of the excitation mechanism and element abundances of the ionized gas; and (c) Kinematic properties (velocity ?elds, velocity dispersion), both from emission and from absorption lines. To cover the full optical extension of the target galaxies (i.e. out to a 3sigma depth of ~23 mag/arcsec2), CALIFA uses the exceptionally large ?eld of view of the PPAK/PMAS IFU at the 3.5m telescope of the Calar Alto observatory. We use two grating setups, one covering the wavelength range between 3700 and 5000 AA at a spectral resolution R~1650, and the other covering 4300 to 7000 AA at R~850. The survey was allocated 210 dark nights, distributed in 6 semesters and starting in July 2010 and is carried out by the CALIFA collaboration, comprising ~70 astronomers from 8 di?erent countries. As a legacy survey, the fully reduced data will be made publically available, once their quality has been veri?ed. We showcase here early results obtained from the data taken so far (21 galaxies).


arXiv: Astrophysics of Galaxies | 2009

M32: Is there an Ancient, Metal-Poor Population?

G. Fiorentino; Antonela Monachesi; Scott Trager; Tod R. Lauer; A. Saha; Kenneth J. Mighell; Wendy L. Freedman; Alan Michael Dressler; Carl J. Grillmair; Eline Tolstoy

We observed two fields near M32 with the ACS/HRC on board the Hubble Space Telescope, located at distances of about 1.8’ and 5.4’ (hereafter Fl and F2, respectively) from the center of M32. To obtain a very detailed and deep color‐magnitude diagram (CMD) and to look for short period variability, we obtained time‐series imaging of each field in 32‐orbit‐long exposures using the F435W (B) and F555W (V) filters, spanning a temporal range of 2 days per filter. We focus on our detection of variability on RR Lyrae variable stars, which represents the only way to obtain information about the presence of a very old population (larger than 10 Gyr) in M32 from optical data. Here we present results obtained from the detection of 31 RR Lyrae in these fields: 17 in Fl and 14 in F2.


Monthly Notices of the Royal Astronomical Society | 2007

On the interpretation of the age and chemical composition of composite stellar populations determined with line-strength indices

P. Serra; Scott Trager

We study the simple stellar population-equivalent (SSP-equivalent) age and chemical composition measured from the Lick/IDS line-strength indices of composite stellar populations (CSPs). We build two sets of similar to 30 000 CSP models using stellar populations synthesis models, combining an old population and a young population with a range of ages and chemical compositions representative of early-type galaxies. We investigate how the SSP-equivalent stellar parameters of the CSPs depend on the stellar parameters of the two input populations; how they depend on V-band luminosity-weighted stellar parameters; and how SSP-equivalent parameters derived from using different Balmer-line indices can be used to reveal the presence of a young population on top of an old one. We find that the SSP-equivalent age depends primarily on the age of the young population and on the mass fraction of the two populations, and that the SSP-equivalent chemical composition depends mainly on the chemical composition of the old population. Furthermore, the SSP-equivalent chemical composition tracks quite closely the V-band luminosity-weighted one, while the SSP-equivalent age is strongly biased towards the age of the young population. In this bias, the age of the young population and the mass fraction between old and young population are degenerate. Finally, assuming typical error bars, we find that a discrepancy between the SSP-equivalent parameters determined with different Balmer-line indices can reveal the presence of a young stellar population on top of an old one as long as the age of the young population is less than similar to 2.5 Gyr and the mass fraction of young-to-old population is between 1 and 10 per cent.


Monthly Notices of the Royal Astronomical Society | 2014

The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices

C. Spiniello; Scott Trager; Léon V. E. Koopmans; Charlie Conroy

We investigate the optical spectral region of spectra of 1000 stars searching for IMFsensitive features to constrain the low-mass end of the initial mass function (IMF) slope in elliptical galaxies. The use of indicators bluer than NIR features (NaI, CaT, Wing-Ford FeH) is crucial if we want to compare our observations to optical simple stellar population (SSP) models. We use the MILES stellar library (S anchez-Bl azquez


Monthly Notices of the Royal Astronomical Society | 2014

Evolution of the atomic and molecular gas content of galaxies

Gergö Popping; Rachel S. Somerville; Scott Trager

We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure based and one metallicity based. We find that both recipes successfully reproduce the gas fractions and gas-to-stellar mass ratios of H I and H2 in local galaxies, as well as the H I and H2 disc sizes up to z ≤ 2. We reach good agreement with the locally observed H I and H2 mass function, although both recipes slightly overpredict the low-mass end of the H I mass function. Both of our models predict that the high-mass end of the H I mass function remains nearly constant at redshifts z <2.0. The metallicity-based recipe yields a higher cosmic density of cold gas and much lower cosmic H2 fraction over the entire redshift range probed than the pressure-based recipe. These strong differences in H I mass function and cosmic density between the two recipes are driven by low-mass galaxies (log (M*/M⊙) ≤ 7) residing in low-mass haloes (log (Mvir/M⊙) ≤ 10). Both recipes predict that galaxy gas fractions remain high from z ˜ 6to3 and drop rapidly at lower redshift. The galaxy H2 fractions show a similar trend, but drop even more rapidly. We provide predictions for the CO J = 1-0 luminosity of galaxies, which will be directly comparable with observations with sub-mm and radio instruments.


Proceedings of SPIE | 2012

4MOST-4-metre Multi-Object Spectroscopic Telescope

Roelof S. de Jong; Olga Bellido-Tirado; Cristina Chiappini; Éric Depagne; Roger Haynes; Diana Johl; Olivier Schnurr; A. D. Schwope; Jakob Walcher; Frank Dionies; Dionne M. Haynes; Andreas Kelz; Francisco S. Kitaura; Georg Lamer; Ivan Minchev; Volker Müller; Sebastián E. Nuza; Jean-Christophe Olaya; Tilmann Piffl; Emil Popow; Matthias Steinmetz; Ugur Ural; Mary E K Williams; R. Winkler; Lutz Wisotzki; Wolfgang R. Ansorge; Manda Banerji; Eduardo Gonzalez Solares; M. J. Irwin; Robert C. Kennicutt

4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and ~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].


Monthly Notices of the Royal Astronomical Society | 2010

Galactic chemical evolution in hierarchical formation models: I. Early-type galaxies in the local Universe

Mat ´ õas Arrigoni; Scott Trager; Rachel S. Somerville; Brad K. Gibson

We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for the galaxies in the semi-analytic simulations. This is the first time a SAM with feedback from active galactic nuclei has included a chemical evolution prescription that relaxes the instantaneous recycling approximation. We find that the new models are able to reproduce the observed mass-metallicity (M(star)-[ Z/H]) relation and, for the first time in a SAM, we reproduce the observed positive slope of the mass-abundance ratio (M(star)-[alpha/Fe]) relation. Our results indicate that in order to simultaneously match these observations of early-type galaxies, the use of both a very mildly top-heavy initial mass function (i.e. with a slope of x = 1.15 as opposed to a standard x = 1.3), and a lower fraction of binaries that explode as Type Ia supernovae (SNe Ia) appears to be required. We also examine the rate of SN explosions in the simulated galaxies. In early-type (non-star-forming) galaxies, our predictions are also consistent with the observed SNe rates. However, in star-forming galaxies, a higher fraction of SN Ia binaries than in our preferred model is required to match the data. If, however, we deviate from the classical model and introduce a population of SNe Ia with very short delay times, our models simultaneously produce a good match to the observed metallicities, abundance ratios and SN rates.

Collaboration


Dive into the Scott Trager's collaboration.

Top Co-Authors

Avatar

P. Bonifacio

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Kevin Middleton

Science and Technology Facilities Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reynier F. Peletier

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

J. Alfonso L. Aguerri

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Y.-P. Chen

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Dee

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge