Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott W. Aesif is active.

Publication


Featured researches published by Scott W. Aesif.


Journal of Cell Biology | 2009

Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas

Vikas Anathy; Scott W. Aesif; Amy S. Guala; Marije Havermans; Niki L. Reynaert; Ye-Shih Ho; Ralph C. Budd; Yvonne M. W. Janssen-Heininger

Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis.


American Journal of Respiratory Cell and Molecular Biology | 2011

Ablation of Glutaredoxin-1 Attenuates Lipopolysaccharide-Induced Lung Inflammation and Alveolar Macrophage Activation

Scott W. Aesif; Vikas Anathy; Ine Kuipers; Amy S. Guala; Jessica N. Reiss; Ye-Shih Ho; Yvonne M. W. Janssen-Heininger

Protein S-glutathionylation (PSSG), a reversible posttranslational modification of reactive cysteines, recently emerged as a regulatory mechanism that affects diverse cell-signaling cascades. The extent of cellular PSSG is controlled by the oxidoreductase glutaredoxin-1 (Grx1), a cytosolic enzyme that specifically de-glutathionylates proteins. Here, we sought to evaluate the impact of the genetic ablation of Grx1 on PSSG and on LPS-induced lung inflammation. In response to LPS, Grx1 activity increased in lung tissue and bronchoalveolar lavage (BAL) fluid in WT (WT) mice compared with PBS control mice. Glrx1(-/-) mice consistently showed slight but statistically insignificant decreases in total numbers of inflammatory cells recovered by BAL. However, LPS-induced concentrations of IL-1β, TNF-α, IL-6, and Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) in BAL were significantly decreased in Glrx1(-/-) mice compared with WT mice. An in situ assessment of PSSG reactivity and a biochemical evaluation of PSSG content demonstrated increases in the lung tissue of Glrx1(-/-) animals in response to LPS, compared with WT mice or PBS control mice. We also demonstrated that PSSG reactivity was prominent in alveolar macrophages (AMs). Comparative BAL analyses from WT and Glrx1(-/-) mice revealed fewer and smaller AMs in Glrx1(-/-) mice, which showed a significantly decreased expression of NF-κB family members, impaired nuclear translocation of RelA, and lower levels of NF-κB-dependent cytokines after exposure to LPS, compared with WT cells. Taken together, these results indicate that Grx1 regulates the production of inflammatory mediators through control of S-glutathionylation-sensitive signaling pathways such as NF-κB, and that Grx1 expression is critical to the activation of AMs.


Methods in Enzymology | 2010

Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.

Scott W. Aesif; Yvonne M. W. Janssen-Heininger; Niki L. Reynaert

The oxidation of protein cysteine residues represents significant posttranslational modifications that impact a wide variety of signal transduction cascades and diverse biological processes. Oxidation of cysteines occurs through reactions with reactive oxygen as well as nitrogen species. These oxidative events can lead to irreversible modifications, such as the formation of sulfonic acids, or manifest as reversible modifications such as the conjugation of glutathione with the cysteine moiety, a process termed S-glutathionylation (also referred to as S-glutathiolation, or protein mixed disulfides). Similarly, S-nitrosothiols can also react with the thiol group in a process known as S-nitrosylation (or S-nitrosation). It is the latter two events that have recently come to the forefront of cellular biology through their ability to reversibly impact numerous cellular processes. Herein we describe two protocols for the detection of S-glutathionylated or S-nitrosylated proteins in situ. The protocol for the detection of S-glutathionylated proteins relies on the catalytic specificity of glutaredoxin-1 for the reduction of S-glutathionylated proteins. The protocol for the detection of S-nitrosylated proteins represents a modification of the previously described biotin switch protocol, which relies on ascorbate in the presence of chelators to decompose S-nitrosylated proteins. These techniques can be applied in situ to elucidate which compartments in tissues are affected in diseased states whose underlying pathologies are thought to represent a redox imbalance.


Free Radical Biology and Medicine | 2011

Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.

Scott W. Aesif; Ine Kuipers; Jos van der Velden; Jane E. Tully; Amy S. Guala; Vikas Anathy; Juliana Sheely; Niki L. Reynaert; Emiel F.M. Wouters; Albert van der Vliet; Yvonne M. W. Janssen-Heininger

The transcription factor nuclear factor κB (NF-κB) is a critical regulator of inflammation and immunity and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyzes deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice that express a doxycycline-inducible constitutively active version of inhibitory κB kinase-β (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2-kb region of the Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of proinflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB and suggests a feed-forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.


American Journal of Pathology | 2009

In Situ Analysis of Protein S-Glutathionylation in Lung Tissue Using Glutaredoxin-1-Catalyzed Cysteine Derivatization

Scott W. Aesif; Vikas Anathy; Marije Havermans; Amy S. Guala; Karina Ckless; Douglas J. Taatjes; Yvonne M. W. Janssen-Heininger

Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.


Annals of the New York Academy of Sciences | 2010

Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease

Yvonne M. W. Janssen-Heininger; Scott W. Aesif; Jos van der Velden; Amy S. Guala; Jessica N. Reiss; Elle C. Roberson; Ralph C. Budd; Niki L. Reynaert; Vikas Anathy

Tissue fibrosis is believed to be a manifestation of dysregulated repair following injury, in association with impaired reepithelialization, and aberrant myofibroblast activation and proliferation. Numerous pathways have been linked to the pathogenesis of fibrotic lung disease, including the death receptor Fas, which contributes to apoptosis of lung epithelial cells. A redox imbalance also has been implicated in disease pathogenesis, although mechanistic details whereby oxidative changes intersect with profibrotic signaling pathways remain elusive. Oxidation of cysteines in proteins, such as S‐glutathionylation (PSSG), is known to act as a regulatory event that affects protein function. This manuscript will discuss evidence that S‐glutathionylation regulates death receptor induced apoptosis, and the potential implications for cysteine oxidations in the pathogenesis of in fibrotic lung disease.


American Journal of Respiratory and Critical Care Medicine | 2014

Glutaredoxin-1 Attenuates S-Glutathionylation of the Death Receptor Fas and Decreases Resolution of Pseudomonas aeruginosa Pneumonia

Vikas Anathy; Scott W. Aesif; Sidra M. Hoffman; Jenna Bement; Amy S. Guala; Karolyn G. Lahue; Laurie W. Leclair; Benjamin T. Suratt; Carlyne D. Cool; Matthew J. Wargo; Yvonne M. W. Janssen-Heininger

RATIONALE The death receptor Fas is critical for bacterial clearance and survival of mice after Pseudomonas aeruginosa infection. OBJECTIVES Fas ligand (FasL)-induced apoptosis is augmented by S-glutathionylation of Fas (Fas-SSG), which can be reversed by glutaredoxin-1 (Grx1). Therefore, the objective of this study was to investigate the interplay between Grx1 and Fas in regulating the clearance of P. aeruginosa infection. METHODS Lung samples from patients with bronchopneumonia were analyzed by immunofluorescence. Primary tracheal epithelial cells, mice lacking the gene for Grx1 (Glrx1(-/-)), Glrx1(-/-) mice treated with caspase inhibitor, or transgenic mice overexpressing Grx1 in the airway epithelium were analyzed after infection with P. aeruginosa. MEASUREMENTS AND MAIN RESULTS Patient lung samples positive for P. aeruginosa infection demonstrated increased Fas-SSG compared with normal lung samples. Compared with wild-type primary lung epithelial cells, infection of Glrx1(-/-) cells with P. aeruginosa showed enhanced caspase 8 and 3 activities and cell death in association with increases in Fas-SSG. Infection of Glrx1(-/-) mice with P. aeruginosa resulted in enhanced caspase activity and increased Fas-SSG as compared with wild-type littermates. Absence of Glrx1 significantly enhanced bacterial clearance, and decreased mortality postinfection with P. aeruginosa. Inhibition of caspases significantly decreased bacterial clearance postinfection with P. aeruginosa, in association with decreased Fas-SSG. In contrast, transgenic mice that overexpress Grx1 in lung epithelial cells had significantly higher lung bacterial loads, enhanced mortality, decreased caspase activation, and Fas-SSG in the lung after infection with P. aeruginosa, compared with wild-type control animals. CONCLUSIONS These results suggest that S-glutathionylation of Fas within the lung epithelium enhances epithelial apoptosis and promotes clearance of P. aeruginosa and that glutaredoxin-1 impairs bacterial clearance and increases the severity of pneumonia in association with deglutathionylation of Fas.


American Journal of Respiratory Cell and Molecular Biology | 2011

Cigarette Smoke Targets Glutaredoxin 1, Increasing S-glutathionylation and Epithelial Cell Death

Ine Kuipers; Amy S. Guala; Scott W. Aesif; Gonda Konings; Freek G. Bouwman; Edwin C. M. Mariman; Emiel F.M. Wouters; Yvonne M. W. Janssen-Heininger; Niki L. Reynaert

It is established that cigarette smoke (CS) causes irreversible oxidations in lung epithelial cells, and can lead to their death. However, its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Glutathione is an important antioxidant against inhaled reactive oxygen species as a direct scavenger, but it can also covalently bind protein thiols upon mild oxidative stress to protect them against irreversible oxidation. This posttranslational modification, known as S-glutathionylation, can be reversed under physiological conditions by the enzyme, glutaredoxin 1 (Grx1). The aim of this study was to investigate if CS modifies Grx1, and if this impacts on protein S-glutathionylation and epithelial cell death. Upon exposure of alveolar epithelial cells to CS extract (CSE), a decrease in Grx1 mRNA and protein expression was observed, in conjunction with decreased activity and increased protein S-glutathionylation. Using mass spectrometry, irreversible oxidation of recombinant Grx1 by CSE and acrolein was demonstrated, which was associated with attenuated enzyme activity. Furthermore, carbonylation of Grx1 in epithelial cells after exposure to CSE was shown. Overexpression of Grx1 attenuated CSE-induced increases in protein S-glutathionylation and increased survival. Conversely, primary tracheal epithelial cells of mice lacking Grx1 were more sensitive to CS-induced cell death, with corresponding increases in protein S-glutathionylation. These results show that CS can modulate Grx1, not only at the expression level, but can also directly modify Grx1 itself, decreasing its activity. These findings demonstrate a role for the Grx1/S-glutathionylation redox system in CS-induced lung epithelial cell death.


Journal of Immunology | 2007

Catalase Overexpression Fails to Attenuate Allergic Airways Disease in the Mouse

Niki L. Reynaert; Scott W. Aesif; Toby McGovern; Amy L. Brown; Emiel F.M. Wouters; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness.


PLOS ONE | 2012

Altered Cigarette Smoke-Induced Lung Inflammation Due to Ablation of Grx1

Ine Kuipers; Ken R. Bracke; Guy Brusselle; Scott W. Aesif; Renske Krijgsman; Ilja C. W. Arts; Emiel F. M. Wouters; Niki L. Reynaert

Glutaredoxins (Grx) are redox enzymes that remove glutathione bound to protein thiols, know as S-glutathionylation (PSSG). PSSG is a reservoir of GSH and can affect the function of proteins. It inhibits the NF-κB pathway and LPS aspiration in Grx1 KO mice with decreased inflammatory cytokine levels. In this study we investigated whether absence of Grx1 similarly repressed cigarette smoke-induced inflammation in an exposure model in mice. Cigarette smoke exposure for four weeks decreased lung PSSG levels, but increased PSSG in lavaged cells and lavage fluid (BALF). Grx1 KO mice had increased levels of PSSG in lung tissue, BALF and BAL cells in response to smoke compared to wt mice. Importantly, levels of multiple inflammatory mediators in the BALF were decreased in Grx1 KO animals following cigarette smoke exposure compared to wt mice, as were levels of neutrophils, dendritic cells and lymphocytes. On the other hand, macrophage numbers were higher in Grx1 KO mice in response to smoke. Although cigarette smoke in vivo caused inverse effects in inflammatory and resident cells with respect to PSSG, primary macrophages and epithelial cells cultured from Grx1 KO mice both produced less KC compared to cells isolated from WT mice after smoke extract exposure. In this manuscript, we provide evidence that Grx1 has an important role in regulating cigarette smoke-induced lung inflammation which seems to diverge from its effects on total PSSG. Secondly, these data expose the differential effect of cigarette smoke on PSSG in inflammatory versus resident lung cells.

Collaboration


Dive into the Scott W. Aesif's collaboration.

Top Co-Authors

Avatar

Niki L. Reynaert

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emiel F.M. Wouters

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge