Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott W. Simpkins is active.

Publication


Featured researches published by Scott W. Simpkins.


Science | 2016

A global genetic interaction network maps a wiring diagram of cellular function

Michael Costanzo; Benjamin VanderSluis; Elizabeth N. Koch; Anastasia Baryshnikova; Carles Pons; Guihong Tan; Wen Wang; Matej Usaj; Julia Hanchard; Susan D. Lee; Vicent Pelechano; Erin B. Styles; Maximilian Billmann; Jolanda van Leeuwen; Nydia Van Dyk; Zhen Yuan Lin; Elena Kuzmin; Justin Nelson; Jeff Piotrowski; Tharan Srikumar; Sondra Bahr; Yiqun Chen; Raamesh Deshpande; Christoph F. Kurat; Sheena C. Li; Zhijian Li; Mojca Mattiazzi Usaj; Hiroki Okada; Natasha Pascoe; Bryan Joseph San Luis

INTRODUCTION Genetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. RATIONALE Genome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS We tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. CONCLUSION A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships. A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial analysis of functional enrichment was used to identify and color network regions enriched for similar Gene Ontology bioprocess terms. We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Methods of Molecular Biology | 2015

Chemical genomic profiling via barcode sequencing to predict compound mode of action

Jeff Piotrowski; Scott W. Simpkins; Sheena C. Li; Raamesh Deshpande; Sean McIlwain; Irene M. Ong; Chad L. Myers; Charlie Boone; Raymond J. Andersen

Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds.


Nature Chemical Biology | 2017

Functional annotation of chemical libraries across diverse biological processes.

Jeff S. Piotrowski; Sheena C. Li; Raamesh Deshpande; Scott W. Simpkins; Justin Nelson; Yoko Yashiroda; Jacqueline M Barber; Hamid Safizadeh; Erin Wilson; Hiroki Okada; Abraham A Gebre; Karen Kubo; Nikko P. Torres; Marissa A LeBlanc; Kerry Andrusiak; Reika Okamoto; Mami Yoshimura; Eva DeRango-Adem; Jolanda van Leeuwen; Katsuhiko Shirahige; Anastasia Baryshnikova; Grant W. Brown; Hiroyuki Hirano; Michael Costanzo; Brenda Andrews; Yoshikazu Ohya; Minoru Yoshida; Chad L. Myers; Charles Boone

Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells to a compound, revealing chemical-genetic interactions that can elucidate a compound’s mode of action. We developed a highly parallel and unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized, diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode sequencing protocol, enabling assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened 7 different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.


Nature Communications | 2017

Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite.

Eduardo H. Morales; Camilo A. Pinto; Roberto Luraschi; Claudia M. Muñoz-Villagrán; Fabián A. Cornejo; Scott W. Simpkins; Justin Nelson; Felipe A. Arenas; Jeff S. Piotrowski; Chad L. Myers; Hirotada Mori; Claudio C. Vásquez

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


bioRxiv | 2017

Large-scale interpretation of chemical-genetic interaction profiles using a genetic interaction network

Scott W. Simpkins; Justin Nelson; Raamesh Deshpande; Sheena C. Li; Jeff S. Piotrowski; Erin Wilson; Abraham A Gebre; Reika Okamoto; Yoshikazu Ohya; Minoru Yoshida; Charles Boone; Chad L. Myers

Chemical-genetic interactions – observed when the treatment of mutant cells with chemical compounds reveals unexpected phenotypes – contain rich functional information linking compounds to their cellular modes of action. To systematically identify these interactions, an array of mutants is challenged with a compound and monitored for fitness defects, generating a chemical-genetic interaction profile that provides a quantitative, unbiased description of the cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-wide double-mutant screens, provide a key for interpreting the functional information contained in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses of genetic and chemical-genetic interaction networks have not been systematically evaluated. We developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a genetic interaction network to predict the biological processes perturbed by compounds. CG-TARGET compared favorably to a baseline enrichment approach across a variety of benchmarks, achieving similar accuracy while substantially improving the ability to control the false discovery rate of biological process predictions. We applied CG-TARGET to a recent screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae, integrating this dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500 compounds with high-confidence biological process predictions for further study. Upon investigation of the compatibility of chemical-genetic and genetic interaction profiles, we observed that one-third of observed chemical-genetic interactions contributed to the highest-confidence biological process predictions and that negative chemical-genetic interactions overwhelmingly formed the basis of these predictions. We present here a detailed characterization of the CG-TARGET method along with experimental validation of predicted biological process targets, focusing on inhibitors of tubulin polymerization and cell cycle progression. Our approach successfully demonstrates the use of genetic interaction networks in the functional annotation of compounds to biological processes.Genetic interactions provide a key for interpreting the functional information contained in chemical-genetic interaction profiles. However, they have remained underutilized in this capacity across recent chemical-genetic interaction screening efforts and their ability to interpret chemical-genetic interaction profiles on a large scale has not been tested. We developed a method, which we refer to as CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that integrates the data from large-scale chemical-genetic interaction screens with genetic interaction data to predict the biological processes perturbed by compounds. CG-TARGET compared favorably to a standard enrichment approach across a variety of benchmarks, achieving similar performance on measures of accuracy and substantial improvement in the ability to control the false discovery rate of its predictions. We found that one-third to one-half of gene mutants in the data contribute to the highest-confidence biological process predictions and that these contributions overwhelmingly come from negative chemical-genetic interactions. This method was used to prioritize over 1500 out of over 13,000 compounds for further study in a recently-completed chemical-genetic interaction screen in Saccharomyces cerevisiae, enabling the rapid functional annotation of unknown compounds to biological processes through targeted biological validations. We present here a detailed characterization of the method and further biological validations to demonstrate the utility of genetic interactions in the interpretation of chemical-genetic interaction profiles and the effectiveness of our implementation of this concept.


bioRxiv | 2017

Improving prediction of compound function from chemical structure using chemical-genetic networks

Hamid Safizadeh; Scott W. Simpkins; Justin Nelson; Chad L. Myers

The drug discovery process can be significantly improved through understanding how the structure of chemical compounds relates to their function. A common paradigm that has been used to filter and prioritize compounds is ligand-based virtual screening, where large libraries of compounds are queried for high structural similarity to a target molecule, with the assumption that structural similarity is predictive of similar biological activity. Although the chemical informatics community has already proposed a wide range of structure descriptors and similarity coefficients, a major challenge has been the lack of systematic and unbiased benchmarks for biological activity that covers a broad range of targets to definitively assess the performance of the alternative approaches. We leveraged a large set of chemical-genetic interaction data from the yeast Saccharomyces cerevisiae that our labs have recently generated, covering more than 13,000 compounds from the RIKEN NPDepo and several NCI, NIH, and GlaxoSmithKline (GSK) compound collections. Supportive of the idea that chemical-genetic interaction data provide an unbiased proxy for biological functions, we found that many commonly used structural similarity measures were able to predict the compounds that exhibited similar chemical-genetic interaction profiles, although these measures did exhibit significant differences in performance. Using the chemical-genetic interaction profiles as a basis for our evaluation, we performed a systematic benchmarking of 10 different structure descriptors, each combined with 12 different similarity coefficients. We found that the All-Shortest Path (ASP) structure descriptor paired with the Braun-Blanquet similarity coefficient provided superior performance that was robust across several different compound collections. We further describe a machine learning approach that improves the ability of the ASP metric to capture biological activity. We used the ASP fingerprints as input for several supervised machine learning models and the chemical-genetic interaction profiles as the standard for learning. We found that the predictive power of the ASP fingerprints (as well as several other descriptors) could be substantially improved by using support vector machines. For example, on held-out data, we measured a 5-fold improvement in the recall of biologically similar compounds at a precision of 50% based upon the ASP fingerprints. Our results generally suggest that using high-dimensional chemical-genetic data as a basis for refining chemical structure descriptors can be a powerful approach to improving prediction of biological function from structure.


bioRxiv | 2017

Efficient strategies for screening large-scale genetic interaction networks

Raamesh Deshpande; Justin Nelson; Scott W. Simpkins; Michael Costanzo; Jeff S. Piotrowski; Sheena C. Li; Charlie Boone; Chad L. Myers

Large-scale genetic interaction screening is a powerful approach for unbiased characterization of gene function and understanding systems-level cellular organization. While genome-wide screens are desirable as they provide the most comprehensive interaction profiles, they are resource and time-intensive and sometimes infeasible, depending on the species and experimental platform. For these scenarios, optimal methods for more efficient screening while still producing the maximal amount of information from the resulting profiles are of interest. To address this problem, we developed an optimal algorithm, called COMPRESS-GI, which selects a small but informative set of genes that captures most of the functional information contained within genome-wide genetic interaction profiles. The utility of this algorithm is demonstrated through an application of the approach to define a diagnostic mutant set for large-scale chemical genetic screens, where more than 13,000 compound screens were achieved through the increased throughput enabled by the approach. COMPRESS-GI can be broadly applied for directing genetic interaction screens in other contexts, including in species with little or no prior genetic-interaction data.


ACS Chemical Biology | 2017

Chemical Genomics, Structure Elucidation, and in Vivo Studies of the Marine-Derived Anticlostridial Ecteinamycin

Thomas P. Wyche; René F. Ramos Alvarenga; Jeff S. Piotrowski; Megan Duster; Simone Warrack; Gabriel Cornilescu; Travis J. De Wolfe; Yanpeng Hou; Doug R. Braun; Gregory A. Ellis; Scott W. Simpkins; Justin Nelson; Chad L. Myers; James L. Steele; Hirotada Mori; Nasia Safdar; John L. Markley; Scott R. Rajski; Tim S. Bugni

A polyether antibiotic, ecteinamycin (1), was isolated from a marine Actinomadura sp., cultivated from the ascidian Ecteinascidia turbinata. 13C enrichment, high resolution NMR spectroscopy, and molecular modeling enabled elucidation of the structure of 1, which was validated on the basis of comparisons with its recently reported crystal structure. Importantly, ecteinamycin demonstrated potent activity against the toxigenic strain of Clostridium difficile NAP1/B1/027 (MIC = 59 ng/μL), as well as other toxigenic and nontoxigenic C. difficile isolates both in vitro and in vivo. Additionally, chemical genomics studies using Escherichia coli barcoded deletion mutants led to the identification of sensitive mutants such as trkA and kdpD involved in potassium cation transport and homeostasis supporting a mechanistic proposal that ecteinamycin acts as an ionophore antibiotic. This is the first antibacterial agent whose mechanism of action has been studied using E. coli chemical genomics. On the basis of these data, we propose ecteinamycin as an ionophore antibiotic that causes C. difficile detoxification and cell death via potassium transport dysregulation.


Antimicrobial Agents and Chemotherapy | 2017

A New Natural Product Analog of Blasticidin S Reveals Cellular Uptake Facilitated by the NorA Multidrug Transporter

Jack R. Davison; Katheryn Lohith; Xiaoning Wang; Kostyantyn D. Bobyk; Sivakoteswara R. Mandadapu; Su Lin Lee; Regina Cencic; Justin Nelson; Scott W. Simpkins; Karen M. Frank; Jerry Pelletier; Chad L. Myers; Jeff Piotrowski; Harold E. Smith; Carole A. Bewley

ABSTRACT The permeation of antibiotics through bacterial membranes to their target site is a crucial determinant of drug activity but in many cases remains poorly understood. During screening efforts to discover new broad-spectrum antibiotic compounds from marine sponge samples, we identified a new analog of the peptidyl nucleoside antibiotic blasticidin S that exhibited up to 16-fold-improved potency against a range of laboratory and clinical bacterial strains which we named P10. Whole-genome sequencing of laboratory-evolved strains of Staphylococcus aureus resistant to blasticidin S and P10, combined with genome-wide assessment of the fitness of barcoded Escherichia coli knockout strains in the presence of the antibiotics, revealed that restriction of cellular access was a key feature in the development of resistance to this class of drug. In particular, the gene encoding the well-characterized multidrug efflux pump NorA was found to be mutated in 69% of all S. aureus isolates resistant to blasticidin S or P10. Unexpectedly, resistance was associated with inactivation of norA, suggesting that the NorA transporter facilitates cellular entry of peptidyl nucleosides in addition to its known role in the efflux of diverse compounds, including fluoroquinolone antibiotics.


ACS Chemical Biology | 2017

Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin

Navid Adnani; Marc G. Chevrette; Srikar N. Adibhatla; Fan Zhang; Qing Yu; Doug R. Braun; Justin Nelson; Scott W. Simpkins; Bradon R. McDonald; Chad L. Myers; Jeff S. Piotrowski; Christopher J. Thompson; Cameron R. Currie; Lingjun Li; Scott R. Rajski; Tim S. Bugni

Collaboration


Dive into the Scott W. Simpkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff S. Piotrowski

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Piotrowski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge