Scott William Roy
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott William Roy.
Science | 2010
Simon Henriet; Sutada Mungpakdee; Jean-Marc Aury; Corinne Da Silva; Henner Brinkmann; Jana Mikhaleva; Lisbeth Charlotte Olsen; Claire Jubin; Cristian Cañestro; Jean-Marie Bouquet; Gemma Danks; Julie Poulain; Coen Campsteijn; Marcin Adamski; Ismael Cross; Fekadu Yadetie; Matthieu Muffato; Alexandra Louis; Stephen Butcher; Georgia Tsagkogeorga; Anke Konrad; Sarabdeep Singh; Marit Flo Jensen; Evelyne Huynh Cong; Helen Eikeseth-Otteraa; Benjamin Noel; Véronique Anthouard; Betina M. Porcel; Rym Kachouri-Lafond; Atsuo Nishino
Ocean Dweller Sequenced The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies. A metazoan genome departs from the organization that appears rigidly established in other animal phyla. Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.
Nucleic Acids Research | 2008
Manuel Irimia; Scott William Roy
Over the past 5 years, the availability of dozens of whole genomic sequences from a wide variety of eukaryotic lineages has revealed a very large amount of information about the dynamics of intron loss and gain through eukaryotic history, as well as the evolution of intron sequences. Implicit in these advances is a great deal of information about the structure and evolution of surrounding sequences. Here, we review the wealth of ways in which structures of spliceosomal introns as well as their conservation and change through evolution may be harnessed for evolutionary and genomic analysis. First, we discuss uses of intron length distributions and positions in sequence assembly and annotation, and for improving alignment of homologous regions. Second, we review uses of introns in evolutionary studies, including the utility of introns as indicators of rates of sequence evolution, for inferences about molecular evolution, as signatures of orthology and paralogy, and for estimating rates of nucleotide substitution. We conclude with a discussion of phylogenetic methods utilizing intron sequences and positions.
BMC Evolutionary Biology | 2007
Manuel Irimia; Jakob Lewin Rukov; David Penny; Scott William Roy
BackgroundAlternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins.ResultsFor each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes.ConclusionAlong with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.
Trends in Genetics | 2009
Scott William Roy; Manuel Irimia
Despite their ubiquity, the mechanisms and evolutionary forces responsible for the origins of spliceosomal introns remain mysterious. Recent molecular evidence supports the idea that intronic RNAs can reverse splice into RNA transcripts, a crucial step for an influential model of intron gain. However, a paradox attends this model because the rate of intron gain is expected to be orders of magnitude lower than the rate of intron loss in general, in contrast to findings from several lineages. We suggest two possible resolutions to this paradox, based on steric considerations and on the possibility of co-option by specific introns of retroelement transposition pathways, respectively. In addition, we introduce two potential mechanisms for intron creation, based on hybrid RNA-DNA reverse splicing and on template switching errors by reverse transcriptase.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Alexei Fedorov; Xiaohong Cao; Serge Saxonov; Sandro J. de Souza; Scott William Roy; Walter Gilbert
Do introns delineate elements of protein tertiary structure? This issue is crucial to the debate about the role and origin of introns. We present an analysis of the full set of proteins with known three-dimensional structures that have homologs with intron positions recorded in GenBank. A computer program was generated that maps on a reference sequence the positions of all introns in homologous genes. We have applied this program to a set of 665 nonredundant protein sequences with defined three-dimensional structures in the Protein Data Bank (PDB), which yielded 8,217 introns in 407 proteins. For the subset of proteins corresponding to ancient conserved regions (ACR), we find that there is a correlation of phase-zero introns with the boundary regions of modules and no correlation for the phase-one and phase-two positions. However, for a subset of proteins without prokaryotic counterparts (131 non-ACR proteins), a set of presumably modern proteins (or proteins that have diverged extremely far from any ancestral form), we do not find any correlation of phase-zero intron positions with three-dimensional structure. Furthermore, we find an anticorrelation of phase-one intron positions with module boundaries: they actually have a preference for the interior of modules. This finding is explicable as a preference for phase-one introns to lie in glycines, between G|G sequences, the preference for glycines being anticorrelated with the three-dimensional modules. We interpret this anticorrelation as a sign that a number of phase-one introns, and hence many modern introns, have been inserted into G|G “protosplice” sequences.
Genome Biology | 2004
Scott William Roy
The long-standing question of how genes acquire introns has provoked much debate. A recent study makes considerable progress by identifying numerous recently gained introns in nematodes - although it remains difficult to distinguish definitively between models of intron gain.
BioEssays | 2009
Manuel Irimia; Jakob Lewin Rukov; Scott William Roy; Jeppe Vinther; Jordi Garcia-Fernàndez
Alternative splicing (AS) is a widespread mechanism with an important role in increasing transcriptome and proteome diversity by generating multiple different products from the same gene. Evolutionary studies of AS have focused primarily on the conservation of alternatively spliced sequences or of the AS pattern of those sequences itself. Less is known about the evolution of the regulation of AS, but several studies, working from different perspectives, have recently made significant progress. Here, we categorize the different levels of AS evolution, and summarize the studies on evolution of AS regulation, which point to a high level of evolutionary conservation of the regulation of AS events conserved between related species. This suggests that the quantitative regulation of AS is an intrinsic part of AS function. We discuss the potential role of changes in developmental regulation of AS as an additional layer in complex gene regulatory networks and in the emergence of genetic novelties.
Trends in Ecology and Evolution | 2009
Scott William Roy; Manuel Irimia
Comparative genomics has begun to unravel the evolutionary history of transcript splicing in eukaryotes. The last common ancestor of modern eukaryotes is now known to have had at least moderately intron-dense genes and two complex spliceosomes. For other splicing-related phenomena the evolutionary history is less clear. We suggest that frequent mis-splicing is likely to be ancestral to eukaryotes, whereas trans-splicing and operon splicing are likely to be more recent. The origins of regulated splicing, alternative splicing and splicing of untranslated transcript regions are less certain. The data discussed underscore the significant genomic complexity of early eukaryotes, and should help to frame future questions about the origins of eukaryotic genome structure.
BMC Evolutionary Biology | 2008
David Hoogewijs; Sasha De Henau; Sylvia Dewilde; Luc Moens; Marjolein Couvreur; Gaetan Borgonie; Serge N. Vinogradov; Scott William Roy; Jacques R. Vanfleteren
BackgroundGlobin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles.ResultsIn the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection.ConclusionOur results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying selection subsequently dampened further evolution and facilitated fixation of the duplicated genes in the genome.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Manuel Irimia; Amanda Denuc; Demian Burguera; Ildiko Somorjai; José M. Martín-Durán; Grigory Genikhovich; Senda Jimenez-Delgado; Ulrich Technau; Scott William Roy; Gemma Marfany; Jordi Garcia-Fernàndez
Novel organismal structures in metazoans are often undergirded by complex gene regulatory networks; as such, understanding the emergence of new structures through evolution requires reconstructing the series of evolutionary steps leading to these underlying networks. Here, we reconstruct the step-by-step assembly of the vertebrate splicing network regulated by Nova, a splicing factor that modulates alternative splicing in the vertebrate central nervous system by binding to clusters of YCAY motifs on pre-RNA transcripts. Transfection of human HEK293T cells with Nova orthologs indicated vertebrate-like splicing regulatory activity in bilaterian invertebrates, thus Nova acquired the ability to bind YCAY clusters and perform vertebrate-like splicing modulation at least before the last common ancestor of bilaterians. In situ hybridization studies in several species showed that Nova expression became restricted to CNS later on, during chordate evolution. Finally, comparative genomics studies revealed a diverse history for Nova-regulated exons, with target exons arising through both de novo exon creation and acquisition of YCAY motifs by preexisting exons throughout chordate and vertebrate history. In addition, we find that tissue-specific Nova expression patterns emerged independently in other lineages, suggesting independent assembly of tissue-specific regulatory networks.