Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Williamson is active.

Publication


Featured researches published by Scott Williamson.


PLOS Genetics | 2009

Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

Ryan N. Gutenkunst; Ryan D. Hernandez; Scott Williamson; Carlos Bustamante

Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU).


Nature | 2005

Natural selection on protein-coding genes in the human genome

Carlos Bustamante; Adi Fledel-Alon; Scott Williamson; Rasmus Nielsen; Melissa Todd Hubisz; Stephen Glanowski; David M. Tanenbaum; Thomas J. White; John J. Sninsky; Ryan D. Hernandez; Daniel Civello; Mark D. Adams; Michele Cargill; Andrew G. Clark

Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species varies greatly, with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection, and others, such as the selfing weed Arabidopsis thaliana, showing an excess of deleterious variation within local populations. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped the recent molecular evolution of our species. Our analysis discovered 304 (9.0%) out of 3,377 potentially informative loci showing evidence of rapid amino acid evolution. Furthermore, 813 (13.5%) out of 6,033 potentially informative loci show a paucity of amino acid differences between humans and chimpanzees, indicating weak negative selection and/or balancing selection operating on mutations at these loci. We find that the distribution of negatively and positively selected genes varies greatly among biological processes and molecular functions, and that some classes, such as transcription factors, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees.


PLOS Genetics | 2008

Assessing the evolutionary impact of amino acid mutations in the human genome.

Adam R. Boyko; Scott Williamson; Amit Indap; Jeremiah D. Degenhardt; Ryan D. Hernandez; Kirk E. Lohmueller; Mark D. Adams; Steffen Schmidt; John J. Sninsky; Shamil R. Sunyaev; Thomas J. White; Rasmus Nielsen; Andrew G. Clark; Carlos Bustamante

Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution of demographic and selective effects to patterning amino acid variation in the human genome. We find evidence of an ancient population expansion in the sample with African ancestry and a relatively recent bottleneck in the sample with European ancestry. After accounting for these demographic effects, we find strong evidence for great variability in the selective effects of new amino acid replacing mutations. In both populations, the patterns of variation are consistent with a leptokurtic distribution of selection coefficients (e.g., gamma or log-normal) peaked near neutrality. Specifically, we predict 27–29% of amino acid changing (nonsynonymous) mutations are neutral or nearly neutral (|s|<0.01%), 30–42% are moderately deleterious (0.01%<|s|<1%), and nearly all the remainder are highly deleterious or lethal (|s|>1%). Our results are consistent with 10–20% of amino acid differences between humans and chimpanzees having been fixed by positive selection with the remainder of differences being neutral or nearly neutral. Our analysis also predicts that many of the alleles identified via whole-genome association mapping may be selectively neutral or (formerly) positively selected, implying that deleterious genetic variation affecting disease phenotype may be missed by this widely used approach for mapping genes underlying complex traits.


PLOS Genetics | 2005

Localizing Recent Adaptive Evolution in the Human Genome

Scott Williamson; Melissa J. Hubisz; Andrew G. Clark; Bret A. Payseur; Carlos Bustamante; Rasmus Nielsen

Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome with very strong evidence (p < 10−5) of a recent selective sweep and where our estimate of the position of the selective sweep falls within 100 kb of a known gene. Within these regions, genes of biological interest include genes in pigmentation pathways, components of the dystrophin protein complex, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep.


Genetics | 2007

A Markov Chain Monte Carlo Approach for Joint Inference of Population Structure and Inbreeding Rates From Multilocus Genotype Data

Hong Gao; Scott Williamson; Carlos Bustamante

Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to understand the genetic structure of natural populations (Wright 1965). For many species, it is of considerable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing genetic variation: inbreeding (mating among relatives) and population substructure (limited dispersal of gametes). Here, we extend the popular Bayesian clustering approach STRUCTURE (Pritchard et al. 2000) for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using multilocus genetic markers. This is accomplished by eliminating the assumption of Hardy–Weinberg equilibrium within clusters and, instead, calculating expected genotype frequencies on the basis of inbreeding or selfing rates. We demonstrate the need for such an extension by showing that selfing leads to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias toward spurious signals of admixture. We gauge the performance of our method using extensive coalescent simulations and demonstrate that our approach can correct for this bias. We also apply our approach to understanding the population structure of the wild relative of domesticated rice, Oryza rufipogon, an important partially selfing grass species. Using a sample of n = 16 individuals sequenced at 111 random loci, we find strong evidence for existence of two subpopulations, which correlates well with geographic location of sampling, and estimate selfing rates for both groups that are consistent with estimates from experimental data (s ≈ 0.48–0.70).


PLOS Genetics | 2005

Genome-wide patterns of nucleotide polymorphism in domesticated rice.

Ana L. Caicedo; Scott Williamson; Ryan D. Hernandez; Adam R. Boyko; Adi Fledel-Alon; Thomas L. York; Nicholas R. Polato; Kenneth M. Olsen; Rasmus Nielsen; Susan R. McCouch; Carlos Bustamante; Michael D. Purugganan

Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been the dominant demographic model for domesticated species, cannot explain the derived nucleotide polymorphism site frequency spectrum in rice. Instead, a bottleneck model that incorporates selective sweeps, or a more complex demographic model that includes subdivision and gene flow, are more plausible explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection results only in a local signature of variation.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Simultaneous inference of selection and population growth from patterns of variation in the human genome

Scott Williamson; Ryan D. Hernandez; Adi Fledel-Alon; Lan Zhu; Rasmus Nielsen; Carlos Bustamante

Natural selection and demographic forces can have similar effects on patterns of DNA polymorphism. Therefore, to infer selection from samples of DNA sequences, one must simultaneously account for demographic effects. Here we take a model-based approach to this problem by developing predictions for patterns of polymorphism in the presence of both population size change and natural selection. If data are available from different functional classes of variation, and a priori information suggests that mutations in one of those classes are selectively neutral, then the putatively neutral class can be used to infer demographic parameters, and inferences regarding selection on other classes can be performed given demographic parameter estimates. This procedure is more robust to assumptions regarding the true underlying demography than previous approaches to detecting and analyzing selection. We apply this method to a large polymorphism data set from 301 human genes and find (i) widespread negative selection acting on standing nonsynonymous variation, (ii) that the fitness effects of nonsynonymous mutations are well predicted by several measures of amino acid exchangeability, especially site-specific methods, and (iii) strong evidence for very recent population growth.


Nature | 1998

Coherent light scattering by blue feather barbs

Richard O. Prum; Rodolfo H. Torres; Scott Williamson; Jan Dyck

The structural colours of avian feather barbs are created by the scattering of light from the spongy matrix of keratin and air in the medullary layer of the barbs,. However, the precise physical mechanism for the production of these colours is still controversial,,,. Here we use a two-dimensional (2D) Fourier analysis of the spatial variation in refractive index of the blue feather barbs of the plum-throated cotinga (Cotinga maynana, Cotingidae) to show that the colour is produced by constructive interference between light waves scattered coherently by the nanostructured keratin-air matrix of the barbs.


PLOS Genetics | 2005

Global Dissemination of a Single Mutation Conferring White Pericarp in Rice

Megan Sweeney; Michael J. Thomson; Yong Gu Cho; Yong Jin Park; Scott Williamson; Carlos Bustamante; Susan R. McCouch

Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa.


Proceedings of the Royal Society of London B: Biological Sciences | 1999

Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

Richard O. Prum; Rodolfo H. Torres; Scott Williamson; Jan Dyck

We conducted two–dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose–faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring–like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

Collaboration


Dive into the Scott Williamson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rasmus Nielsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge