Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Z. Jones is active.

Publication


Featured researches published by Scott Z. Jones.


Cement & Concrete Composites | 2017

Limestone and silica powder replacements for cement: Early-age performance

Dale P. Bentz; Chiara F. Ferraris; Scott Z. Jones; Didier Lootens; Franco Zunino

Developing functional concrete mixtures with less ordinary portland cement (OPC) has been one of the key objectives of the 21st century sustainability movement. While the supplies of many alternatives to OPC (such as fly ash or slag) may be limited, those of limestone and silica powders produced by crushing rocks seem virtually endless. The present study examines the chemical and physical influences of these powders on the rheology, hydration, and setting of cement-based materials via experiments and three-dimensional microstructural modeling. It is shown that both limestone and silica particle surfaces are active templates (sites) for the nucleation and growth of cement hydration products, while the limestone itself is also somewhat soluble, leading to the formation of carboaluminate hydration products. Because the filler particles are incorporated as active members of the percolated backbone that constitutes initial setting of a cement-based system, replacements of up to 50 % of the OPC by either of these powders on a volumetric basis have minimal impact on the initial setting time, and even a paste with only 5 % OPC and 95 % limestone powder by volume achieves initial set within 24 h. While their influence on setting is similar, the limestone and silica powders produce pastes with quite different rheological properties, when substituted at the same volume level. When proceeding from setting to later age strength development, one must also consider the dilution of the system due to cement removal, along with the solubility/reactivity of the filler. However, for applications where controlled (prompt) setting is more critical than developing high strengths, such as mortar tile adhesives, grouts, and renderings, significant levels of these powder replacements for cement can serve as sustainable, functional alternatives to the oft-employed 100 % OPC products.


Journal of the American Ceramic Society | 2017

Cements in the 21st Century: Challenges, Perspectives, and Opportunities

Joseph J. Biernacki; Jeffrey W. Bullard; Gaurav Sant; Kevin Brown; F.P. Glasser; Scott Z. Jones; Tyler Ley; Richard A. Livingston; Luc Nicoleau; Jan Olek; Florence Sanchez; Rouzbeh Shahsavari; Paul E. Stutzman; Konstantine Sobolev; Tracie Prater

In a book published in 1906, Richard Meade outlined the history of portland cement up to that point1. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20th century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?


International Conference on the Durability of Concrete Structures | 2014

Surface and Uniaxial Electrical Measurements on Layered Cementitious Composites having Cylindrical and Prismatic Geometries

Robert Spragg; Scott Z. Jones; Chiara Villani; Kenneth A. Snyder; Dale P. Bentz; Amire Poursaee; Jason Weiss

Electrical measurements are becoming a common method to assess the transport properties of concrete. For a saturated homogenous system, the surface resistance and the uniaxial resistance measurements provide equivalent measures of resistivity once geometry is appropriately taken into account. However, cementitious systems are not always homogenous. This article compares bulk and surface resistance measurements in cementitious materials intentionally composed of layered materials (i.e., layers with different resistivities). For this study, layered systems were composed of paste and mortar layers, representing the heterogeneity that can exist in the surface layers of field applications as a result of differences in moisture content, segregation, ionic ingress, carbonation, finishing operations, or ionic leaching. The objective of this article is to illustrate that these electrical measures can differ in layered systems (with sharp layer boundaries) and to demonstrate the impact of the surface layer properties on the estimation for the underlying material properties, for both cylindrical and prismatic specimens. Accounting for the effects of a surface layer requires a separate correction in addition to the overall specimen geometry corrections.


Cement and Concrete Research | 2017

Anion Capture and Exchange by Functional Coatings: New Routes to Mitigate Steel Corrosion in Concrete Infrastructure

Gabriel Falzone; Magdalena Balonis; Dale P. Bentz; Scott Z. Jones; Gaurav Sant

Chloride-induced corrosion is a major cause of degradation of reinforced concrete infrastructure. While the binding of chloride ions (Cl-) by cementitious phases is known to delay corrosion, this approach has not been systematically exploited as a mechanism to increase structural service life. Recently, Falzone et al. [Cement and Concrete Research72, 54-68 (2015)] proposed calcium aluminate cement (CAC) formulations containing NO3-AFm to serve as anion exchange coatings that are capable of binding large quantities of Cl- ions, while simultaneously releasing corrosion-inhibiting NO3- species. To examine the viability of this concept, Cl- binding isotherms and ion-diffusion coefficients of a series of hydrated CAC formulations containing admixed Ca(NO3)2 (CN) are quantified. This data is input into a multi-species Nernst-Planck (NP) formulation, which is solved for a typical bridge-deck geometry using the finite element method (FEM). For exposure conditions corresponding to seawater, the results indicate that Cl- scavenging CAC coatings (i.e., top-layers) can significantly delay the time to corrosion (e.g., 5 ≤ df ≤ 10, where df is the steel corrosion initiation delay factor [unitless]) as compared to traditional OPC-based systems for the same cover thickness; as identified by thresholds of Cl-/OH- or Cl-/NO3- (molar) ratios in solution. The roles of hindered ionic diffusion, and the passivation of the reinforcing steel rendered by NO3- are also discussed.


Cement & Concrete Composites | 2017

Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity

Robert Spragg; Scott Z. Jones; Yiwen Bu; Yang Lu; Dale P. Bentz; Kenneth A. Snyder; Jason Weiss

Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.


Cement & Concrete Composites | 2017

Measurement and modeling of the ability of crack fillers to prevent chloride ingress into mortar

Scott Z. Jones; Dale P. Bentz; Jeffrey M. Davis; Daniel S. Hussey; David L. Jacobson; John L. Molloy; John R. Sieber

A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (μXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by μXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.


RILEM International Conference on Concrete and Digital Fabrication | 2018

Rheological Control of 3D Printable Cement Paste and Mortars

Scott Z. Jones; Dale P. Bentz; Nicos Martys; William L. George; Austin Thomas

Recent advances in concrete construction such as three-dimensional concrete printing (3DCP) have given rise to new requirements on the control of both the hydration and rheology of cementitious materials. To meet these new demands, and to move toward adoption of 3DCP on a commercial scale, in-operando control of hydration and rheology will be required. In this study, two cement paste mixtures containing limestone powder of two different median particle sizes are used to create 3D printed structures with a cement paste printer. Hydration control in the form of acceleration is achieved with the addition of the limestone powder to the cement and rheology control is achieved by using limestone with different median particle sizes. Rheology measurements conducted concurrently with printed structures indicate that yield stress and a measure of thixotropy of the cement paste provide an indicator as to whether a material will produce a multi-filament free-standing structure for a given 3DCP system. Simulations of particles flowing in a pipe are used to study the rheological behavior of paste and mortar. For the case of a mortar, the flow rate of suspended particles (sand) follows the same functional form with driving force as the matrix fluid (cement paste). Shear-induced particle migration increases the density of particles toward the center of the pipe, a result that implies that the aggregates may not be uniformly distributed.


Cement & Concrete Composites | 2018

Influence of substrate moisture state and roughness on interface microstructure and bond strength: Slant shear vs. pull-off testing

Dale P. Bentz; Igor De la Varga; José Muñoz; Robert P. Spragg; Benjamin A. Graybeal; Daniel S. Hussey; David L. Jacobson; Scott Z. Jones; Jacob M. LaManna

There are conflicting views in the literature concerning the optimum moisture state for an existing substrate prior to the application of a repair material. Both saturated-surface-dry (SSD) and dry substrates have been found to be preferable in a variety of studies. One confounding factor is that some studies evaluate bonding of the repair material to the substrate via pull-off (direct tension) testing, while others have employed some form of shear specimens as their preferred testing configuration. Available evidence suggests that dry substrate specimens usually perform equivalently or better in shear testing, while SSD ones generally exhibit higher bond strengths when a pull-off test is performed, although exceptions to these trends have been observed. This paper applies a variety of microstructural characterization tools to investigate the interfacial microstructure that develops when a fresh repair material is applied to either a dry or SSD substrate. Simultaneous neutron and X-ray radiography are employed to observe the dynamic microstructural rearrangements that occur at this interface during the first 4 h of curing. Based on the differences in water movement and densification (particle compaction) that occur for the dry and SSD specimens, respectively, a hypothesis is formulated as to why different bond tests may favor one moisture state over the other, also dependent on their surface roughness. It is suggested that the compaction of particles at a dry substrate surface may increase the frictional resistance when tested under slant shear loading, but contribute relatively little to the bonding when the interface is submitted to pull-off forces. For maximizing bond performance, the fluidity of the repair material and the roughness and moisture state of the substrate must all be given adequate consideration.


Construction and Building Materials | 2015

Multi-Scale Investigation of the Performance of Limestone in Concrete

Dale P. Bentz; Ahmad Ardani; Tim Barrett; Scott Z. Jones; Didier Lootens; Max A. Peltz; Taijiro Sato; Paul E. Stutzman; Jussara Tanesi; W. Jason Weiss


Cement & Concrete Composites | 2015

Simulation studies of methods to delay corrosion and increase service life for cracked concrete exposed to chlorides

Scott Z. Jones; Nicos Martys; Yang Lu; Dale P. Bentz

Collaboration


Dive into the Scott Z. Jones's collaboration.

Top Co-Authors

Avatar

Dale P. Bentz

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Paul E. Stutzman

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth A. Snyder

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Nicos Martys

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Max A. Peltz

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmad Ardani

Federal Highway Administration

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Hussey

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

David L. Jacobson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jason Weiss

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge