Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sea C. Min is active.

Publication


Featured researches published by Sea C. Min.


Journal of Food Science | 2013

Plum Coatings of Lemongrass Oil-incorporating Carnauba Wax-based Nanoemulsion

In Hah Kim; Hanna Lee; Jung Eun Kim; Kyung Bin Song; Youn Suk Lee; Dae Sung Chung; Sea C. Min

Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax-based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life.


Journal of Food Science | 2013

Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies.

In Hah Kim; Jaejoon Han; Ja Hyun Na; Pahn Sik Chang; Myung Sub Chung; Ki Hwan Park; Sea C. Min

UNLABELLED Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P < 0.05) at repelling moth larvae. The release rate of cinnamaldehyde, an active repellent of cinnamaldehyde, in the PP was 23 times lower when cinnamaldehyde was microencapsulated. Coating with the microcapsules did not alter the tensile properties of the films. The invasion of larvae into cookies was prevented by the insect-repellent films, demonstrating potential for the films in insect-resistant packaging for food products. PRACTICAL APPLICATION The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth.


Journal of Food Science | 2016

Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging

Ah Young Song; Yoon Ah Oh; Si Hyeon Roh; Ji Hyeon Kim; Sea C. Min

The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging.


Food Science and Biotechnology | 2015

Cold plasma treatment for microbial safety and preservation of fresh lettuce

Ah Young Song; Yeong Ji Oh; Jung Eun Kim; Kyung Bin Song; Deog Hwan Oh; Sea C. Min

Cold plasma treatment (CPT) was investigated for inhibition of foodborne pathogens and extension of fresh lettuce storage life. Lettuce samples were treated with CP at 400 W and 900 W for 10 min for assessment of the effects of CPT on inhibition of Escherichia coli O157:H7 and Salmonella Typhimurium, and on physicochemical and sensory properties of lettuce. N2, an N2-O2 mixture, and He effectively formed CP against both pathogens. CPT inhibited both pathogens on lettuce by up to 2.8 log CFU/g. The Weibull model adequately described the degree of microbial inhibition using CPT. N2-CPT did not affect the sensory properties of lettuce. N2-CPT resulted in a bacteriostatic effect against growth of E. coli O157:H7 but did not affect physicochemical properties of lettuce during storage. CPT demonstrated potential for improving the microbial safety of vegetables without loss of physicochemical or sensory properties.


Journal of Food Science | 2013

Quality Change of Apple Slices Coated with Aloe vera Gel during Storage

Hye-Yeon Song; Wan-Shin Jo; Nak-Bum Song; Sea C. Min; Kyung Bin Song

Fresh-cut apples are easily susceptible to browning and microbial spoilage. In this study, an edible coating prepared from Aloe vera gel containing antibrowning solution was applied to preserve the quality of fresh-cut apples during storage. Fresh-cut apples were treated with both an Aloe vera gel and an Aloe vera gel containing 0.5% cysteine and then stored at 4 °C for 16 d. The color, firmness, weight loss, soluble solid content, titratable acidity, microbial analysis, and sensory evaluation were analyzed during storage. Fresh-cut apples coated with the Aloe vera gel showed delayed browning and reduced weight loss and softening compared to the control. The Aloe vera gel coating was also effective in reducing the populations of the total aerobic bacteria and yeast and molds. In particular, Aloe vera gel containing 0.5% cysteine was most effective in delaying browning and the reduction of microbial populations among the treatments. These results suggest that an Aloe vera gel coating can be used for maintaining the quality of fresh-cut apples.


Journal of Food Science | 2012

Trout skin gelatin-based edible film development.

Dayeon Kim; Sea C. Min

UNLABELLED Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. PRACTICAL APPLICATION The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry.


International Journal of Food Microbiology | 2011

Listeria monocytogenes inhibition by defatted mustard meal-based edible films

Hahn-Bit Lee; Bong Soo Noh; Sea C. Min

An antimicrobial edible film was developed from defatted mustard meal (Sinapis alba) (DMM), a byproduct from the bio-fuel industry, without incorporating external antimicrobials and its antimicrobial activity against Listeria monocytogenes and physical properties were investigated. The DMM colloidal solution consisting of 184 g water, 14 g DMM, and 2g glycerol was homogenized and incubated at 37°C for 0.2, 0.5, 24 or 48 h to prepare a film-forming solution. The pH of a portion of the film-forming solution (pH 5.5) was adjusted to 2.0 or 4.0. Films were formed by drying the film-forming solutions at 23°C for 48 h. The film-forming solution incubated for 48 h inhibited L. monocytogenes in broth and on agar media. Antimicrobial effects of the film prepared from the 48 h-incubated solution increased with decrease in pH of the solution from 5.5 to 2.0. The film from the film forming solution incubated for 48 h (pH 2.0) initially inhibited more than 4.0 log CFU/g of L. monocytogenes inoculated on film-coated salmon. The film-coating retarded the growth of L. monocytogenes in smoked salmon at 5, 10, and 15°C and the antimicrobial effect during storage was more noticeable when the coating was applied before inoculation than when it was applied after inoculation. The tensile strength, percentage elongation, solubility in watercxu, and water vapor permeability of the anti microbial film were 2.44 ± 0.19 MPa, 6.40 ± 1.13%, 3.19 ± 0.90%, and 3.18 ± 0.63 gmm/kPa hm(2), respectively. The antimicrobial DMM films have demonstrated a potential to be applied to foods as wraps or coatings to control the growth of L. monocytogenes.


Journal of Food Science | 2014

Retardation of Listeria Monocytogenes Growth in Mozzarella Cheese Using Antimicrobial Sachets Containing Rosemary Oil and Thyme Oil

Jung H. Han; Dhaval Patel; Jung Eun Kim; Sea C. Min

An antimicrobial sachet containing microcellular foam starch (MFS) with embedded rosemary oil and thyme oil was developed to reduce bacterial growth in shredded mozzarella cheese. The efficacy of the volatiles of oils at various concentrations in reducing Listeria monocytogenes as well as the release of the oils from the MFS have been also determined in this study. The cheese, inoculated with a cocktail of 5 strains of L. monocytogenes (approximately 3 log CFU/g), was packaged in a Nylon/EVOH/PE bag. A paper sachet containing MFS embedded with rosemary oil and thyme oil, separately or together, was inserted into the bag. Rosemary and thyme oil volatiles released from the sachet restricted the growth of L. monocytogenes, resulting in a 2.5 log CFU/g reduction on day 9 at 10 °C. The volatile oils also showed inhibitory effects on the growth of lactic acid bacteria (LAB) and total aerobic bacteria (TAB). After 15 d at 10 °C, the numbers of LAB and TAB in the samples containing the sachet with both oils experienced a 1.2 and 1.4 log CFU/g reduction, respectively, compared to untreated samples. Nonetheless, the sachet treatment produced a distinct odor, unfavorably received by the panelists. The results suggest the potential for application of the sachet system for the reduction of growth of L. monocytogenes, LAB, and TAB in food products.


Journal of Food Science | 2016

Oral Toxicity of Cold Plasma-Treated Edible Films for Food Coating.

Sung Hee Han; Hyung Joo Suh; Ki Bae Hong; Su Yeon Kim; Sea C. Min

No prior research has investigated whether the cold plasma treatment (CPT) resulted in the formation of toxic compounds. Therefore, this study carried out the experiment to check the safety of edible films treated with cold plasma by examining their acute and subacute oral toxicity in a rat model. Single-dose acute (5000 mg/kg body weight) and 14-d subacute (1000 mg/kg body weight/day) oral toxicity of cold plasma-treated edible films was assessed for male and female Sprague-Dawley (SD) rats. Rats administered 5000 mg/kg of edible film did not show the signs of acute toxicity or death after 14 d of observation. Similarly, no signs of acute toxicity or death were recorded during 14 d in rats administered 1000 mg/kg/day of edible film treated with cold plasma. Although changes in the levels of several blood components (hematocrit, hemoglobin, bilirubin, creatinine, and aspartate aminotransferase) of samples were observed, the changes compared to the control were considered to be toxicologically irrelevant as their levels were within normal physiological ranges. Macroscopic analysis showed there were no changes in color or texture of representative liver sections of SD rats following the oral administration of edible films with CPT (F-CP) or without CPT (F-NT). The results demonstrate that the cold plasma-treated edible film possessed very low toxicity, suggesting that CPT does not generate harmful by-products in the edible film.


Journal of Food Science | 2014

Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

In Hah Kim; Ah Young Song; Jaejoon Han; Ki Hwan Park; Sea C. Min

UNLABELLED Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. PRACTICAL APPLICATION The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used.

Collaboration


Dive into the Sea C. Min's collaboration.

Top Co-Authors

Avatar

Jung Eun Kim

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar

Kyung Bin Song

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Ah Young Song

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar

Yoon Ah Oh

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeong Ji Oh

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar

Hanna Lee

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hahn-Bit Lee

Seoul Women's University

View shared research outputs
Top Co-Authors

Avatar

In Hah Kim

Seoul Women's University

View shared research outputs
Researchain Logo
Decentralizing Knowledge