Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean A. Parks is active.

Publication


Featured researches published by Sean A. Parks.


Ecological Applications | 2011

Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005

Marc-André Parisien; Sean A. Parks; Meg A. Krawchuk; Mike D. Flannigan; Lynn M. Bowman; Max A. Moritz

In the boreal forest of North America, as in any fire-prone biome, three environmental factors must coincide for a wildfire to occur: an ignition source, flammable vegetation, and weather that is conducive to fire. Despite recent advances, the relative importance of these factors remains the subject of some debate. The aim of this study was to develop models that identify the environmental controls on spatial patterns in area burned for the period 1980-2005 at several spatial scales in the Canadian boreal forest. Boosted regression tree models were built to relate high-resolution data for area burned to an array of explanatory variables describing ignitions, vegetation, and long-term patterns in fire-conducive weather (i.e., fire climate) at four spatial scales (10(2) km2, 10(3) km2, 10(4) km2, and 10(5) km2). We evaluated the relative contributions of these controls on area burned, as well as their functional relationships, across spatial scales. We also assessed geographic patterns of the influence of wildfire controls. The results indicated that extreme temperature during the fire season was a top control at all spatial scales, followed closely by a wind-driven index of ease of fire spread. However, the contributions of some variables differed substantially among the spatial scales, as did their relationship to area burned. In fact, for some key variables the polarity of relationships was inverted from the finest to the broadest spatial scale. It was difficult to unequivocally attribute values of relative importance to the variables chosen to represent ignitions, vegetation, and climate, as the interdependence of these factors precluded clear partitioning. Furthermore, the influence of a variable on patterns of area burned often changed enormously across the biome, which supports the idea that fire-environment relationships in the boreal forest are complex and nonstationary.


Ecological Applications | 2015

Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression

Sean A. Parks; Lisa Holsinger; Carol Miller; Cara R. Nelson

Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.


Ecological Applications | 2013

Latent resilience in ponderosa pine forest: effects of resumed frequent fire

Andrew J. Larson; R. Travis Belote; C. Alina Cansler; Sean A. Parks; Matthew S. Dietz

Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.


Ecological Applications | 2011

Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors

Kevin S. McKelvey; Jeffrey P. Copeland; Michael K. Schwartz; Jeremy S. Littell; Keith B. Aubry; John R. Squires; Sean A. Parks; Marketa McGuire Elsner; Guillaume S. Mauger

Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverines reproductive denning period. We modeled the distribution of snow cover within the Columbia, Upper Missouri, and Upper Colorado River Basins using a downscaled ensemble climate model. The ensemble model was based on the arithmetic mean of 10 global climate models (GCMs) that best fit historical climate trends and patterns within these three basins. Snow cover was estimated from resulting downscaled temperature and precipitation patterns using a hydrologic model. We bracketed our ensemble model predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Because Moderate-Resolution Imaging Spectroradiometer (MODIS)-based snow cover relationships were analyzed at much finer grain than downscaled GCM output, we conducted a second analysis based on MODIS-based snow cover that persisted through 29 May, simulating the onset of spring two weeks earlier in the year. Based on the downscaled ensemble model, 67% of predicted spring snow cover will persist within the study area through 2030-2059, and 37% through 2070-2099. Estimated snow cover for the ensemble model during the period 2070- 2099 was similar to persistent MODIS snow cover through 29 May. Losses in snow cover were greatest at the southern periphery of the study area (Oregon, Utah, and New Mexico, USA) and least in British Columbia, Canada. Contiguous areas of spring snow cover become smaller and more isolated over time, but large (.1000 km 2 ) contiguous areas of wolverine habitat are predicted to persist within the study area throughout the 21st century for all projections. Areas that retain snow cover throughout the 21st century are British Columbia, north-central Washington, northwestern Montana, and the Greater Yellowstone Area. By the late 21st century, dispersal modeling indicates that habitat isolation at or above levels associated with genetic isolation of wolverine populations becomes widespread. Overall, we expect wolverine habitat to persist throughout the species range at least for the first half of the 21st century, but populations will likely become smaller and more isolated.


Remote Sensing | 2014

A new metric for quantifying burn severity: The Relativized Burn Ratio

Sean A. Parks; Gregory K. Dillon; Carol Miller

Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat). There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR) and its relativized form (RdNBR), is most suitable for quantifying burn severity; each has its critics. In this study, we propose and evaluate a new Landsat-based burn severity metric, the relativized burn ratio (RBR), that provides an alternative to dNBR and RdNBR. For 18 fires in the western US, we compared the performance of RBR to both dNBR and RdNBR by evaluating the agreement of these metrics with field-based burn severity measurements. Specifically, we evaluated (1) the correspondence between each metric and a continuous measure of burn severity (the composite burn index) and (2) the overall accuracy of each metric when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, and high). Results indicate that RBR corresponds better to field-based measurements (average R2 among 18 fires = 0.786) than both dNBR (R2 = 0.761) and RdNBR (R2 = 0.766). Furthermore, the overall classification accuracy achieved with RBR (average among 18 fires = 70.5%) was higher than both dNBR (68.4%) and RdNBR (69.2%). Consequently, we recommend RBR as a robust alternative to both dNBR and RdNBR for measuring and classifying burn severity.


Ecosphere | 2012

Spatial bottom-up controls on fire likelihood vary across western North America

Sean A. Parks; Marc-André Parisien; Carol Miller

The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial patterns of fire likelihood. We first developed working hypotheses predicting the influence of each factor based on its spatial structure (i.e., autocorrelation) in each of the four study areas. We then used a simulation model parameterized with extensive fire environment data to create high-resolution maps of fire likelihood, or burn probability (BP). To infer the influence of each bottom-up factor within and among study areas, these BP maps were compared to parallel sets of maps in which one of the three bottom-up factors was randomized. Results showed that ignition pattern had a relatively minor influence on the BP across all four study areas, whereas the influence of fuels was large. The influence of topography was the most equivocal among study areas; it had an insignificant influence in one study area and was the dominant control in another. We also found that the relationship between the influence of these factors and their spatial structure appeared nonlinear, which may have important implications for management activities aimed at attenuating the effect of fuels or ignitions on wildfire risk. This comparative study using landscapes with different biophysical and fire regime characteristics demonstrates the importance of employing consistent methodology to pinpoint the influence of bottom-up controls.


Ecosystems | 2011

Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape

Sean A. Parks; Carol Miller; Meg A. Krawchuk; Mark Heathcott; Max A. Moritz

The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fire-prone boreal landscape of western Canada, Wood Buffalo National Park. This was achieved by producing a high-resolution map of BP using a fire simulation model that models the ignition and spread of individual fires for the current state of the study landscape (that is, the ‘control’). Then, to extract the effect of the variability in ignitions, fuels, and weather on spatial BP patterns, we subtracted the control BP map to those produced by “homogenizing” a single environmental factor of interest (that is, the ‘experimental treatments’). This yielded maps of spatial residuals that represent the spatial BP patterns for which the heterogeneity of each factor of interest is responsible. Residuals were analyzed within a structural equation modeling framework. The results showed unequal contributions of fuels (67.4%), weather (29.2%), and ignitions (3.4%) to spatial BP patterning. The large contribution of fuels reflects how substantial heterogeneity of land cover on this landscape strongly affects BP. Although weather has a chiefly temporal control on fire regimes, the variability in fire-conducive weather conditions exerted a surprisingly large influence on spatial BP patterns. The almost negligible effect of spatial ignition patterns was surprising but explainable in the context of this area’s fire regime. Similar contributions of fuels, weather, and ignitions could be expected in other parts of the boreal forest that lack a strong anthropogenic imprint, but are likely to be altered in human-dominated fire regimes.


PLOS ONE | 2014

Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

Sean A. Parks; Marc-André Parisien; Carol Miller; Solomon Z. Dobrowski

Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.


Environmental Research Letters | 2016

The spatially varying influence of humans on fire probability in North America

Marc-André Parisien; Carol Miller; Sean A. Parks; Evan R. DeLancey; François-Nicolas Robinne; Mike D. Flannigan

Humans affect fire regimes by providing ignition sources in some cases, suppressing wildfires in others, and altering natural vegetation in ways that may either promote or limit fire. In North America, several studies have evaluated the effects of society on fire activity; however, most studies have been regional or subcontinental in scope and used different data and methods, thereby making continent-wide comparisons difficult. We circumvent these challenges by investigating the broad-scale impact of humans on fire activity using parallel statistical models of fire probability from 1984 to 2014 as a function of climate, enduring features (topography and percent nonfuel), lightning, and three indices of human activity (population density, an integrated metric of human activity [Human Footprint Index], and a measure of remoteness [roadless volume]) across equally spaced regions of the United States and Canada. Through a statistical control approach, whereby we account for the effect of other explanatory variables, we found evidence of non-negligible human–wildfire association across the entire continent, even in the most sparsely populated areas. A surprisingly coherent negative relationship between fire activity and humans was observed across the United States and Canada: fire probability generally diminishes with increasing human influence. Intriguing exceptions to this relationship are the continents least disturbed areas, where fewer humans equate to less fire. These remote areas, however, also often have lower lightning densities, leading us to believe that they may be ignition limited at the spatiotemporal scale of the study. Our results suggest that there are few purely natural fire regimes in North America today. Consequently, projections of future fire activity should consider human impacts on fire regimes to ensure sound adaptation and mitigation measures in fire-prone areas.


Ecological Applications | 2016

Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape

Jonathan D. Coop; Sean A. Parks; Sarah R. McClernan; Lisa Holsinger

Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.

Collaboration


Dive into the Sean A. Parks's collaboration.

Top Co-Authors

Avatar

Carol Miller

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Holsinger

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max A. Moritz

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael K. Schwartz

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory K. Dillon

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

John R. Squires

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge