Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean B. Menke is active.

Publication


Featured researches published by Sean B. Menke.


Ecology Letters | 2009

Climatic drivers of hemispheric asymmetry in global patterns of ant species richness.

Robert R. Dunn; Donat Agosti; Alan N. Andersen; Xavier Arnan; Carsten A. Brühl; Xim Cerdá; Aaron M. Ellison; Brian L. Fisher; Matthew C. Fitzpatrick; Heloise Gibb; Nicholas J. Gotelli; Aaron D. Gove; Benoît S. Guénard; Milan Janda; Michael Kaspari; Edward J. Laurent; Jean-Philippe Lessard; John T. Longino; Jonathan Majer; Sean B. Menke; Terrence P. McGlynn; Catherine L. Parr; Stacy M. Philpott; Martin Pfeiffer; Javier Retana; Andrew V. Suarez; Heraldo Heraldo Vasconcelos; Michael D. Weiser; Nathan J. Sanders

Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader

Núria Roura-Pascual; Cang Hui; Takayoshi Ikeda; Gwenaël G.R. Leday; Soledad Carpintero; Xavier Espadaler; Crisanto Gómez; Benoît S. Guénard; Stephen Hartley; Paul D. Krushelnycky; Philip J. Lester; Melodie A. McGeoch; Sean B. Menke; Jes S. Pedersen; Joel Pitt; Joaquin Reyes; Nathan J. Sanders; Andrew V. Suarez; Yoshifumi Touyama; Darren F. Ward; Philip S. Ward; Sue Worner

Because invasive species threaten the integrity of natural ecosystems, a major goal in ecology is to develop predictive models to determine which species may become widespread and where they may invade. Indeed, considerable progress has been made in understanding the factors that influence the local pattern of spread for specific invaders and the factors that are correlated with the number of introduced species that have become established in a given region. However, few studies have examined the relative importance of multiple drivers of invasion success for widespread species at global scales. Here, we use a dataset of >5,000 presence/absence records to examine the interplay between climatic suitability, biotic resistance by native taxa, human-aided dispersal, and human modification of habitats, in shaping the distribution of one of the worlds most notorious invasive species, the Argentine ant (Linepithema humile). Climatic suitability and the extent of human modification of habitats are primarily responsible for the distribution of this global invader. However, we also found some evidence for biotic resistance by native communities. Somewhat surprisingly, and despite the often cited importance of propagule pressure as a crucial driver of invasions, metrics of the magnitude of international traded commodities among countries were not related to global distribution patterns. Together, our analyses on the global-scale distribution of this invasive species provide strong evidence for the interplay of biotic and abiotic determinants of spread and also highlight the challenges of limiting the spread and subsequent impact of highly invasive species.


Ecology | 2007

BIOTIC AND ABIOTIC CONTROLS OF ARGENTINE ANT INVASION SUCCESS AT LOCAL AND LANDSCAPE SCALES

Sean B. Menke; Robert N. Fisher; Walter Jetz; David A. Holway

Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies--especially on animals--have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where introduced species will occur and how their range limits may shift as a result of climate change.


Urban Ecosystems | 2011

Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants

Sean B. Menke; Benoît S. Guénard; Joseph O. Sexton; Michael D. Weiser; Robert R. Dunn; Jules Silverman

We collected ants from six urban and one forest land-use types in Raleigh, NC to examine the effects of urbanization on species richness and assemblage composition. Since urban areas are warmer (i.e., heat island effect) we also tested if cities were inhabited by species from warmer/drier environments. Species richness was lower in industrial areas relative to other urban and natural environments. There are two distinct ant assemblages; 1) areas with thick canopy cover, and 2) more disturbed open urban areas. Native ant assemblages in open environments have more southwestern (i.e., warmer/drier) distributions than forest assemblages. High native species richness suggests that urban environments may allow species to persist that are disappearing from natural habitat fragments. The subset of species adapted to warmer/drier environments indicates that urban areas may facilitate the movement of some species. This suggests that urban adapted ants may be particularly successful at tracking future climate change.


Ecological Entomology | 2007

Effects of aphids on foliar foraging by Argentine ants and the resulting effects on other arthropods

Crystal D. Grover; Kathleen C. Dayton; Sean B. Menke; David A. Holway

Abstract 1. Although interactions between ants and honeydew‐producing insects have received considerable study, relatively little is known about how these interactions alter the behaviour of ants in ways that affect other arthropods. In this study, field and greenhouse experiments were performed that examined how the presence of aphids (Aphis fabae solanella) on Solanum nigrum influenced the foraging behaviour of Argentine ants (Linepithema humile) and, in turn, modified the extent to which ants deter larval lacewings (Chrysoperla rufilabris), which are known aphid predators.


PLOS ONE | 2010

Is It Easy to Be Urban? Convergent Success in Urban Habitats among Lineages of a Widespread Native Ant

Sean B. Menke; Warren Booth; Robert R. Dunn; Coby Schal; Edward L. Vargo; Jules Silverman

The most rapidly expanding habitat globally is the urban habitat, yet the origin and life histories of the populations of native species that inhabit this habitat remain poorly understood. We use DNA barcoding of the COI gene in the widespread native pest ant Tapinoma sessile to test two hypotheses regarding the origin of urban populations and traits associated with their success. First, we determine if urban samples of T. sessile have a single origin from natural populations by looking at patterns of haplotype clustering from across their range. Second, we examine whether polygynous colony structure – a trait associated with invasion success – is correlated with urban environments, by studying the lineage dependence of colony structure. Our phylogenetic analysis of 49 samples identified four well supported geographic clades. Within clades, Kimura-2 parameter pairwise genetic distances revealed <2.3% variation; however, between clade genetic distances were 7.5–10.0%, suggesting the possibility of the presence of cryptic species. Our results indicate that T. sessile has successfully colonized urban environments multiple times. Additionally, polygynous colony structure is a highly plastic trait across habitat, clade, and haplotype. In short, T. sessile has colonized urban habitats repeatedly and appears to do so using life history strategies already present in more natural populations. Whether similar results hold for other species found in urban habitats has scarcely begun to be considered.


Proceedings of the Royal Society B: Biological Sciences | 2015

Climate mediates the effects of disturbance on ant assemblage structure

Heloise Gibb; Nathan J. Sanders; Robert R. Dunn; Simon J. Watson; Manoli Photakis; Sílvia Abril; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Sarah Groc; Brain Heterick; Benjamin D. Hoffmann; Lori Lach; John E. Lattke; Maurice Leponce

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Biology Letters | 2010

Canopy and litter ant assemblages share similar climate–species density relationships

Michael D. Weiser; Nathan J. Sanders; Donat Agosti; Alan N. Andersen; Aaron M. Ellison; Brian L. Fisher; Heloise Gibb; Nicholas J. Gotelli; Aaron D. Gove; Kevin Gross; Benoît S. Guénard; Milan Janda; Michael Kaspari; Jean-Philippe Lessard; John T. Longino; Jonathan Majer; Sean B. Menke; Terrence P. McGlynn; Catherine L. Parr; Stacy M. Philpott; Javier Retana; Andrew V. Suarez; Heraldo Heraldo Vasconcelos; Stephen P. Yanoviak; Robert R. Dunn

Tropical forest canopies house most of the globes diversity, yet little is known about global patterns and drivers of canopy diversity. Here, we present models of ant species density, using climate, abundance and habitat (i.e. canopy versus litter) as predictors. Ant species density is positively associated with temperature and precipitation, and negatively (or non-significantly) associated with two metrics of seasonality, precipitation seasonality and temperature range. Ant species density was significantly higher in canopy samples, but this difference disappeared once abundance was considered. Thus, apparent differences in species density between canopy and litter samples are probably owing to differences in abundance–diversity relationships, and not differences in climate–diversity relationships. Thus, it appears that canopy and litter ant assemblages share a common abundance–diversity relationship influenced by similar but not identical climatic drivers.


Ecosphere | 2014

Changes in ant community composition caused by 20 years of experimental warming vs. 13 years of natural climate shift

Sean B. Menke; John Harte; Robert R. Dunn

Predicting the effects of climate change on community composition is hampered by the lack of integration between long term data sets tracking the effects of natural climate change and the results of experimental climate manipulations. Here we compare the effects of change in climate through time to experimental warming on the composition of high elevation ant communities at the Rocky Mountain Biological Station in Gothic Colorado. We take advantage of a 20-year continuously running warming experiment which has increased soil temperature by 1.58C and advanced snowmelt by 10 days and compare the effects of this experimental warming to natural changes in climate over the past 13 years across three sites spread along a 420-m elevation gradient representing a roughly 18C difference in average annual soil temperature and average advanced snowmelt of 2 weeks. We compared ant community data collected at all four sites in 1997 to collections made at the same sites in 2010. From 1997 to 2010 there was a community wide shift in ant composition along the natural climate gradient with ant communities shifting to higher elevations. Ant communities in the experimental warming site also changed, but they shifted orthogonally to those along the gradient. Interestingly, after 20 years of experimental warming, there is little discernible effect on ant communities in experimentally warmed plots compared to control plots. This discrepancy between the climate manipulation and elevation gradient is probably an effect of the spatial scale of the experimental warming. Ants respond to experimental warming in complex ways due to the physical location of their nests and their foraging area. This is a concern for warming experiments, but one that is hard to address for species that cover even modest areas in their foraging.


Ecology | 2017

A global database of ant species abundances

Heloise Gibb; Rob Dunn; Nathan J. Sanders; Blair F. Grossman; Manoli Photakis; Sílvia Abril; Donat Agosti; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Carsten A. Brühl; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Aaron M. Ellison; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Brian L. Fisher; Robert N. Fisher; Matthew C. Fitzpatrick; Crisanto Gómez; Nicholas J. Gotelli

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.

Collaboration


Dive into the Sean B. Menke's collaboration.

Top Co-Authors

Avatar

Robert R. Dunn

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan N. Andersen

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoît S. Guénard

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew C. Fitzpatrick

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Xavier Arnan

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge