Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean Bailey is active.

Publication


Featured researches published by Sean Bailey.


Journal of Fluid Mechanics | 2010

Turbulence measurements using a nanoscale thermal anemometry probe

Sean Bailey; Gary J. Kunkel; Marcus Hultmark; Margit Vallikivi; Jeff Hill; Karl Meyer; Candice Tsay; Craig B. Arnold; Alexander J. Smits

A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 µm × 60 µm, suspended between two currentcarrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.


Journal of Fluid Mechanics | 2010

Scaling of near-wall turbulence in pipe flow

Marcus Hultmark; Sean Bailey; Alexander J. Smits

New measurements of the streamwise component of the turbulence intensity in a fully developed pipe flow at Reynolds numbers up to 145 000 indicate that the magnitude of the near-wall peak is invariant with Reynolds number in location and magnitude. The results agree with previous pipe flow data that have sufficient spatial resolution to avoid spatial filtering effects, but stand in contrast to similar results obtained in boundary layers, where the magnitude of the peak displays a prominent Reynolds number dependence, although its position is fixed at the same location as in pipe flow. This indicates that the interaction between the inner and outer regions is different in pipe flows and boundary layers.


Journal of Fluid Mechanics | 2008

Azimuthal structure of turbulence in high Reynolds number pipe flow

Sean Bailey; Marcus Hultmark; Alexander J. Smits; Michael P. Schultz

Two-point hot-wire measurements of streamwise velocity were performed in the logarithmic and wake regions of turbulent pipe flow for Reynolds numbers, based on pipe diameter, ranging from 7.6 × 10 4 to 8.3 × 10 6 at four wall-normal positions with azimuthal probe separation. The azimuthal correlations were found to be consistent with the presence of very large-scale coherent regions of low-wavenumber, low-momentum fluid observed in previous studies of wall-bounded flows and were found to be independent of changing Reynolds number and surface roughness effects. At the edge of the logarithmic layer the azimuthal scale determined from the correlations was found to be similar to that observed for channel flows but larger than that observed for boundary layers, inconsistent with the concept of a universal logarithmic region. As the wall-normal position increased outside the logarithmic layer, there was a decrease in azimuthal scale relative to that of channel flow. Using cross-spectral analysis, high-wavenumber motion was found to grow azimuthally with wall-normal distance at a faster rate than the low-wavenumber motions.


Journal of Fluid Mechanics | 2010

Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow

Sean Bailey; Alexander J. Smits

Multi-point velocity measurements have been performed in turbulent pipe flow at Re D = 1.5 × 10 5 and combined with cross-spectral and proper orthogonal decomposition analysis to elucidate information on the structure of the large- and very-large-scale motions in the outer layer of wall-bounded flows. The results indicate that in the outer layer the large-scale motions (LSM) may be composed of detached eddies with a wide range of azimuthal scales, whereas in the logarithmic layer they are attached. The very-large-scale motions (VLSM) have large radial scales, are concentrated around a single azimuthal mode and make a smaller angle with the wall compared to the LSM. The results support a hypothesis that only the detached LSM in the outer layer align to form the VLSM.


Physical Review Letters | 2009

Measurement of local dissipation scales in turbulent pipe flow.

Sean Bailey; Marcus Hultmark; Joerg Schumacher; Victor Yakhot; Alexander J. Smits

Local dissipation scales are a manifestation of the intermittent small-scale nature of turbulence. We report the first experimental evaluation of the distribution of local dissipation scales in turbulent pipe flows for a range of Reynolds numbers: 2.4x10(4)<or=ReD<or=7.0x10(4). Our measurements at the nearly isotropic pipe center line and within the anisotropic logarithmic layer show excellent agreement with distributions that were previously calculated from numerical simulations of homogeneous isotropic box turbulence and with those predicted by theory. The reported results suggest a universality of the smallest-scale fluctuations around the classical Kolmogorov dissipation length.


Journal of Aircraft | 2006

Effects of Free-Stream Turbulence on Wing-Tip Vortex Formation and Near Field

Sean Bailey; Stavros Tavoularis; Benedict H.K. Lee

The formation and near-field development of a wing-tip vortex under the influence of freestream turbulence were examined using flow visualization and hot-wire anemometry. A low turbulence freestream as well as two cases of grid turbulence with different intensities and length scales were considered. In all cases, the tip vortex was found to form from three smaller vortices, but the turbulence in its core was found to intensify with increasing freestream turbulence. The vortex trajectory was found to be unaffected by freestream turbulence, but the wing wake that was rolling up around the vortex was observed to have a curvature that decreased as freestream turbulence increased. The mean axial velocity distribution in the low-turbulence case was neither jetlike nor wakelike but had an annular shape. Time-averaged velocity profiles measured in the turbulent freestream cases were wakelike, and it was inferred that the instantaneous profiles would be significantly affected by vortex meandering. Mean circumferential velocity distributions in the vortex core displayed self-similar developments in all cases examined. Finally, it was found that the apparent diffusion in the shear layer shed from the wing increased with increasing freestream turbulence.


Journal of Fluid Mechanics | 2010

Scaling of global properties of turbulence and skin friction in pipe and channel flows

Victor Yakhot; Sean Bailey; Alexander J. Smits

Experimental data on the Reynolds number dependence of the area-averaged turbulent kinetic energy K and dissipation rate ℰ are presented. It is shown that while in the interval ReD > 105 the total kinetic energy scales with friction velocity (K/u*2 = const), a new scaling law K/〈U〉2 ∝ K/(u*2ReDθ) = const (θ ≈ 1/4) has been discovered in the interval ReD < 105. It is argued that this transition is responsible for the well-known change in the scaling behaviour of the friction factor observed in pipe and channels flows at ReD ≈ 105.


Journal of Computational Physics | 2017

A data-driven adaptive Reynolds-averaged Navier–Stokes k–ω model for turbulent flow

Zhiyong Li; Huaibao Zhang; Sean Bailey; Jesse B. Hoagg; Alexandre Martin

Abstract This paper presents a new data-driven adaptive computational model for simulating turbulent flow, where partial-but-incomplete measurement data is available. The model automatically adjusts the closure coefficients of the Reynolds-averaged Navier–Stokes (RANS) k – ω turbulence equations to improve agreement between the simulated flow and the measurements. This data-driven adaptive RANS k – ω (D-DARK) model is validated with 3 canonical flow geometries: pipe flow, backward-facing step, and flow around an airfoil. For all test cases, the D-DARK model improves agreement with experimental data in comparison to the results from a non-adaptive RANS k – ω model that uses standard values of the closure coefficients. For the pipe flow, adaptation is driven by mean stream-wise velocity data from 42 measurement locations along the pipe radius, and the D-DARK model reduces the average error from 5.2% to 1.1%. For the 2-dimensional backward-facing step, adaptation is driven by mean stream-wise velocity data from 100 measurement locations at 4 cross-sections of the flow. In this case, D-DARK reduces the average error from 40% to 12%. For the NACA 0012 airfoil, adaptation is driven by surface-pressure data at 25 measurement locations. The D-DARK model reduces the average error in surface-pressure coefficients from 45% to 12%.


54th AIAA Aerospace Sciences Meeting | 2016

Characterization of Candidate Materials for Remote Recession Measurements of Ablative Heat Shield Materials

Bradley D. Butler; Michael Winter; Francesco Panerai; Alexandre Martin; Sean Bailey; Margaret Stackpoole; Paul M. Danehy; Scott C. Splinter

A method of remotely measuring surface recession of a material sample in a plasma flow through emission spectroscopy of the post shock layer was characterized through experiments in the NASA Langley HYMETS arc jet facility. Different methods for delivering the seed products into the Phenolic Impregnated Carbon Ablator (PICA) material samples were investigated. Three samples were produced by seeding the PICA material with combinations of Al, Si, HfO2, VB2, Al2O3, SiO2, TiC, HfC, NaCl, and MgCl2 through infusing seed materials into a core of PICA, or through encapsulating seed material in an epoxy disk, mechanically bonding the disk to a PICA sample. The PICA samples seeded with the candidate tracers were then tested at surface temperatures near 2400 K under low pressure air plasma. The emission of Al, Ti, V, Na, and Mg in the post-shock layer was observed in the UV with a high resolution imaging spectrometer viewing the whole stagnation line from the side, and from UV to NIR with a fiber-coupled miniaturized spectrometer observing the sample surface in the wavelength range from 200 nm to 1,100 nm from the front through a collimator. Al, Na, and Mg were found to be emitting in the post-shock spectra even before the recession reached the seeding depth - therefore possibly characterizing the pyrolysis process rather than the recession itself. The appearance of Ti and V emission in the spectra was well correlated with the actual recession which was monitored through a video of the front surface of the sample. The applicability of a seed material as an indicator for recession appears to be related to the melting temperature of the seed material. Future parametric studies will be carried out in low power plasma facilities at the University of Kentucky.


Physics of Fluids | 2017

Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

Sabah F. H. Alhamdi; Sean Bailey

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, “On the universality of local dissipation scales in turbulent channel flow,” J. Fluid Mech. 786, 234–252 (2015)] was utilized to sc...

Collaboration


Dive into the Sean Bailey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge