Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean C. Anderson is active.

Publication


Featured researches published by Sean C. Anderson.


Trends in Ecology and Evolution | 2012

Extinctions in ancient and modern seas

Paul G. Harnik; Heike K. Lotze; Sean C. Anderson; Zoe V. Finkel; Seth Finnegan; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Craig R. McClain; Jenny L. McGuire; Aaron O’Dea; John M. Pandolfi; Carl Simpson; Derek P. Tittensor

In the coming century, life in the ocean will be confronted with a suite of environmental conditions that have no analog in human history. Thus, there is an urgent need to determine which marine species will adapt and which will go extinct. Here, we review the growing literature on marine extinctions and extinction risk in the fossil, historical, and modern records to compare the patterns, drivers, and biological correlates of marine extinctions at different times in the past. Characterized by markedly different environmental states, some past periods share common features with predicted future scenarios. We highlight how the different records can be integrated to better understand and predict the impact of current and projected future environmental changes on extinction risk in the ocean.


Science | 2015

Paleontological baselines for evaluating extinction risk in the modern oceans

Seth Finnegan; Sean C. Anderson; Paul G. Harnik; Carl Simpson; Derek P. Tittensor; Jarrett E. K. Byrnes; Zoe V. Finkel; David R. Lindberg; Lee Hsiang Liow; Rowan Lockwood; Heike K. Lotze; Craig R. McClain; Jenny L. McGuire; Aaron O'Dea; John M. Pandolfi

Recognizing the threat of additive risk Humans are accelerating the extinction rates of species in both terrestrial and marine environments. However, species extinctions have occurred across time for a variety of other reasons. Finnegan et al. looked at the extinction rates across marine genera (groups of species) over the past 23 million years to determine intrinsic extinction rates and what traits or regions correspond to the highest rates. Combining patterns of intrinsic extinction with regions of high anthropogenic threat revealed taxa and areas, particularly in the tropics, where the risk of extinction will be especially high. Science, this issue p. 567 Fossils reveal patterns of extinction in marine species, past and present. Marine taxa are threatened by anthropogenic impacts, but knowledge of their extinction vulnerabilities is limited. The fossil record provides rich information on past extinctions that can help predict biotic responses. We show that over 23 million years, taxonomic membership and geographic range size consistently explain a large proportion of extinction risk variation in six major taxonomic groups. We assess intrinsic risk—extinction risk predicted by paleontologically calibrated models—for modern genera in these groups. Mapping the geographic distribution of these genera identifies coastal biogeographic provinces where fauna with high intrinsic risk are strongly affected by human activity or climate change. Such regions are disproportionately in the tropics, raising the possibility that these ecosystems may be particularly vulnerable to future extinctions. Intrinsic risk provides a prehuman baseline for considering current threats to marine biodiversity.


Ecological Applications | 2015

Portfolio conservation of metapopulations under climate change

Sean C. Anderson; Jonathan W. Moore; Michelle M. McClure; Nicholas K. Dulvy; Andrew B. Cooper

Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance societys desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.


BioScience | 2011

Correlates of Vertebrate Extinction Risk in Canada

Sean C. Anderson; Robert G. Farmer; Francesco Ferretti; Aimee Lee S. Houde; Jeffrey A. Hutchings

Species status assessments are often hindered by a paucity of demographic, abundance, or distributional data. Although extinction-risk correlates have been identified, their wide applicability may be compromised by differences in the variables examined, modeling technique, and phylogenetic or distributional scale. Here, we apply a common analytical approach to examine 14 possible extinction-risk correlates for mammals, fishes, and birds throughout Canada. Among mammals, risk is positively and strongly correlated with road density and age at maturity for land animals and weakly with body size for sea dwellers. Delayed maturity is of primary importance to predicting risk status in fishes, with small body size of secondary importance in freshwater environments. For birds, road density is the dominant correlate of risk. Logistic regression in a multimo del framework offers an instructive means of identifying risk correlates and of applying them in a practicable, empirically defensible manner, thus enhancing support for species-independent risk criteria.


Canadian Journal of Fisheries and Aquatic Sciences | 2008

Evaluating the knowledge base for expanding low-trophic-level fisheries in Atlantic Canada

Sean C. Anderson; Heike K. Lotze; Nancy L. Shackell

Over the last two decades, low-trophic-level fisheries have rapidly expanded in Atlantic Canada, largely compensating for collapsed groundfisheries; however, concerns have been raised regarding the limited background knowledge for many newly targeted species and their overexploitation in other regions. Using government stock assessments, we evaluated the amount of information available to assess population, fisheries, and ecosystem status in emerging (new since 1988), developing (expanding since 1988), and established fisheries on the Scotian Shelf. Emerging fisheries had significantly lower levels of population knowledge than developing and established fisheries. Importantly, knowledge was often lacking in basic population parameters such as growth rates, current biomass, and geographic range. In contrast, ecosystem knowledge, such as habitat disruption and recovery, was higher in emerging than established fisheries. Overall, quantitative knowledge was positively related to fishery value and greatest for...


PLOS ONE | 2013

Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

Kyle A. Artelle; Sean C. Anderson; Andrew B. Cooper; Paul C. Paquet; John D. Reynolds; Chris T. Darimont

Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.


Ecology | 2014

Climate warming mediates negative impacts of rapid pond drying for three amphibian species

Sacha M. O'Regan; Wendy J. Palen; Sean C. Anderson

Anthropogenic climate change will present both opportunities and challenges for pool-breeding amphibians. Increased water temperature and accelerated drying may directly affect larval growth, development, and survival, yet the combined effects of these processes on larvae with future climate change remain poorly understood. Increased surface temperatures are projected to warm water and decrease water inputs, leading to earlier and faster wetland drying. So it is often assumed that larvae will experience negative synergistic impacts with combined warming and drying. However, an alternative hypothesis is that warming-induced increases in metabolic rate and aquatic resource availability might compensate for faster drying rates, generating antagonistic larval responses. We conducted a mesocosm experiment to test the individual and interactive effects of pool permanency (permanent vs. temporary) and water temperature (ambient vs. (+) -3 degrees C) on three anurans with fast-to-slow larval development rates (Great Basin spadefoot [Spea intermontana], Pacific chorus frog [Pseudacris regilla], and northern red-legged frog [Rana aurora]). We found that although tadpoles in warmed pools reached metamorphosis 15-17 days earlier, they did so with little cost (< 2 mm) to size, likely due to greater periphyton growth in warmed pools easing drying-induced resource competition. Warming and drying combined to act antagonistically on early growth (P = 0.06) and survival (P = 0.06), meaning the combined impact was less than the sum of the individual impacts. Warming and drying acted additively on time to and size at metamorphosis. These nonsynergistic impacts may result from cotolerance of larvae to warming and drying, as well as warming helping to offset negative impacts of drying. Our results indicate that combined pool warming and drying may not always be harmful for larval amphibians. However, they also demonstrate that antagonistic responses are difficult to predict, which poses a challenge to proactive conservation and management. Our study highlights the importance of considering the nature of multiple stressor interactions as amphibians are exposed to an increasing number of anthropogenic threats.


PLOS ONE | 2014

ss3sim: an R package for fisheries Stock Assessment simulation with stock synthesis.

Sean C. Anderson; Cole C. Monnahan; Kelli F. Johnson; Kotaro Ono; Juan L. Valero

Simulation testing is an important approach to evaluating fishery stock assessment methods. In the last decade, the fisheries stock assessment modeling framework Stock Synthesis (SS3) has become widely used around the world. However, there lacks a generalized and scriptable framework for SS3 simulation testing. Here, we introduce ss3sim, an R package that facilitates reproducible, flexible, and rapid end-to-end simulation testing with SS3. ss3sim requires an existing SS3 model configuration along with plain-text control files describing alternative population dynamics, fishery properties, sampling scenarios, and assessment approaches. ss3sim then generates an underlying ‘truth’ from a specified operating model, samples from that truth, modifies and runs an estimation model, and synthesizes the results. The simulations can be run in parallel, reducing runtime, and the source code is free to be modified under an open-source MIT license. ss3sim is designed to explore structural differences between the underlying truth and assumptions of an estimation model, or between multiple estimation model configurations. For example, ss3sim can be used to answer questions about model misspecification, retrospective patterns, and the relative importance of different types of fisheries data. We demonstrate the software with an example, discuss how ss3sim complements other simulation software, and outline specific research questions that ss3sim could address.


Proceedings of the Royal Society B: Biological Sciences | 2016

The paradox of inverted biomass pyramids in kelp forest fish communities

Rowan Trebilco; Nicholas K. Dulvy; Sean C. Anderson; Anne K. Salomon

Theory predicts that bottom-heavy biomass pyramids or ‘stacks’ should predominate in real-world communities if trophic-level increases with body size (mean predator-to-prey mass ratio (PPMR) more than 1). However, recent research suggests that inverted biomass pyramids (IBPs) characterize relatively pristine reef fish communities. Here, we estimated the slope of a kelp forest fish community biomass spectrum from underwater visual surveys. The observed biomass spectrum slope is strongly positive, reflecting an IBP. This is incongruous with theory because this steep positive slope would only be expected if trophic position decreased with increasing body size (consumer-to-resource mass ratio, less than 1). We then used δ15N signatures of fish muscle tissue to quantify the relationship between trophic position and body size and instead detected strong evidence for the opposite, with PPMR ≈ 1650 (50% credible interval 280–12 000). The natural history of kelp forest reef fishes suggests that this paradox could arise from energetic subsidies in the form of movement of mobile consumers across habitats, and from seasonally pulsed production inputs at small body sizes. There were four to five times more biomass at large body sizes (1–2 kg) than would be expected in a closed steady-state community providing a measure of the magnitude of subsidies.


Scientific Reports | 2016

Ecology of conflict: marine food supply affects human-wildlife interactions on land

Kyle A. Artelle; Sean C. Anderson; John D. Reynolds; Andrew B. Cooper; Paul C. Paquet; Chris T. Darimont

Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960–2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km2 killed due to conflicts with humans increased by an average of 20% (6–32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1st), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries.

Collaboration


Dive into the Sean C. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan L. Valero

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotaro Ono

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Licandeo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

André E. Punt

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge