Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean C. Little is active.

Publication


Featured researches published by Sean C. Little.


Circulation Research | 2014

Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo

Michael A. Makara; Jerry Curran; Sean C. Little; Hassan Musa; Iuliia Polina; Sakima A. Smith; Patrick J. Wright; Sathya D. Unudurthi; Jedidiah S. Snyder; Vann Bennett; Thomas J. Hund; Peter J. Mohler

Rationale: Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, therapies to target select Nav1.5 properties have remained at the forefront of cardiovascular medicine. However, despite years of investigation, the fundamental pathways governing Nav1.5 membrane targeting, assembly, and regulation are still largely undefined. Objective: Define the in vivo mechanisms underlying Nav1.5 membrane regulation. Methods and Results: Here, we define the molecular basis of an Nav channel regulatory platform in heart. Using new cardiac-selective ankyrin-G-/- mice (conditional knock-out mouse), we report that ankyrin-G targets Nav1.5 and its regulatory protein calcium/calmodulin–dependent kinase II to the intercalated disc. Mechanistically, &bgr;IV-spectrin is requisite for ankyrin-dependent targeting of calcium/calmodulin–dependent kinase II-&dgr;; however, &bgr;IV-spectrin is not essential for ankyrin-G expression. Ankyrin-G conditional knock-out mouse myocytes display decreased Nav1.5 expression/membrane localization and reduced INa associated with pronounced bradycardia, conduction abnormalities, and ventricular arrhythmia in response to Nav channel antagonists. Moreover, we report that ankyrin-G links Nav channels with broader intercalated disc signaling/structural nodes, as ankyrin-G loss results in reorganization of plakophilin-2 and lethal arrhythmias in response to &bgr;-adrenergic stimulation. Conclusions: Our findings provide the first in vivo data for the molecular pathway required for intercalated disc Nav1.5 targeting/regulation in heart. Further, these new data identify the basis of an in vivo cellular platform critical for membrane recruitment and regulation of Nav1.5.


Journal of Biological Chemistry | 2012

AMP-activated Protein Kinase Phosphorylates Cardiac Troponin I at Ser-150 to Increase Myofilament Calcium Sensitivity and Blunt PKA-dependent Function

Benjamin R. Nixon; Ariyoporn Thawornkaiwong; Janel Jin; Elizabeth A. Brundage; Sean C. Little; Jonathan P. Davis; R. John Solaro; Brandon J. Biesiadecki

Background: Myofilament protein phosphorylation is central to cardiac muscle contractile regulation. Results: AMP-activated protein kinase (AMPK) phosphorylates troponin I (TnI) to increase cardiac contraction and blunt the effects of TnI protein kinase A phosphorylation. Conclusion: AMPK myofilament signaling represents a novel mechanism to regulate cardiac contraction. Significance: AMPK links metabolics to TnI regulation of cardiac muscle function and adrenergic regulation. AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism.


Journal of Biological Chemistry | 2013

Molecular Mechanisms Underlying Cardiac Protein Phosphatase 2A Regulation in Heart

Sean T. DeGrande; Sean C. Little; Derek Nixon; Patrick Wright; Jedidiah S. Snyder; Wen Dun; Nathaniel P. Murphy; Ahmet Kilic; Robert S.D. Higgins; Philip F. Binkley; Penelope A. Boyden; Cynthia A. Carnes; Mark E. Anderson; Thomas J. Hund; Peter J. Mohler

Background: PP2A regulates cardiac excitability and physiology. Results: PP2A regulation in heart occurs through integrative transcriptional, translational, and post-translational control of three classes of subunits (17 genes) to control holoenzyme synthesis, localization, and maintenance; pathways are mechanistically altered in heart disease. Conclusion: Multiple mechanisms are present for acute and chronic regulation of specific PP2A populations. Significance: Results provide molecular insight into cardiac PP2A regulation. Kinase/phosphatase balance governs cardiac excitability in health and disease. Although detailed mechanisms for cardiac kinase regulation are established, far less is known regarding cardiac protein phosphatase 2A (PP2A) regulation. This is largely due to the complexity of the PP2A holoenzyme structure (combinatorial assembly of three subunit enzyme from >17 subunit genes) and the inability to segregate “global” PP2A function from the activities of multiple “local” holoenzyme populations. Here we report that PP2A catalytic, regulatory, and scaffolding subunits are tightly regulated at transcriptional, translational, and post-translational levels to tune myocyte function at base line and in disease. We show that past global read-outs of cellular PP2A activity more appropriately represent the collective activity of numerous individual PP2A holoenzymes, each displaying a specific subcellular localization (dictated by select PP2A regulatory subunits) as well as local specific post-translational catalytic subunit methylation and phosphorylation events that regulate local and rapid holoenzyme assembly/disassembly (via leucine carboxymethyltransferase 1/phosphatase methylesterase 1 (LCMT-1/PME-1). We report that PP2A subunits are selectively regulated between human and animal models, across cardiac chambers, and even within specific cardiac cell types. Moreover, this regulation can be rapidly tuned in response to cellular activation. Finally, we report that global PP2A is altered in human and experimental models of heart disease, yet each pathology displays its own distinct molecular signature though specific PP2A subunit modulatory events. These new data provide an initial view into the signaling pathways that govern PP2A function in heart but also establish the first step in defining specific PP2A regulatory targets in health and disease.


Circulation | 2015

Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo

Patric Glynn; Hassan Musa; Xiangqiong Wu; Sathya D. Unudurthi; Sean C. Little; Lan Qian; Patrick J. Wright; Przemysław B. Radwański; Sandor Gyorke; Peter J. Mohler; Thomas J. Hund

Background— Voltage-gated Na+ channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. Methods and Results— To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca2+ handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. Conclusions— Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.


Biochemistry | 2010

Effect of Calcium-sensitizing Mutations on Calcium Binding and Exchange with Troponin C in Increasingly Complex Biochemical Systems

Svetlana B. Tikunova; Bin Liu; Nicholas Swindle; Sean C. Little; Aldrin V. Gomes; Darl R. Swartz; Jonathan P. Davis

The calcium-dependent interactions between troponin C (TnC) and other thin and thick filament proteins play a key role in the regulation of cardiac muscle contraction. Five hydrophobic residues (Phe(20), Val(44), Met(45), Leu(48), and Met(81)) in the regulatory domain of TnC were individually substituted with polar Gln, to examine the effect of these mutations that sensitized isolated TnC to calcium on (1) the calcium binding and exchange with TnC in increasingly complex biochemical systems and (2) the calcium sensitivity of actomyosin ATPase. The hydrophobic residue mutations drastically affected calcium binding and exchange with TnC in increasingly complex biochemical systems, indicating that side chain intra- and intermolecular interactions of these residues play a crucial role in determining how TnC responds to calcium. However, the mutations that sensitized isolated TnC to calcium did not necessarily increase the calcium sensitivity of the troponin (Tn) complex or reconstituted thin filaments with or without myosin S1. Furthermore, the calcium sensitivity of reconstituted thin filaments (in the absence of myosin S1) was a better predictor of the calcium dependence of actomyosin ATPase activity than that of TnC or the Tn complex. Thus, both the intrinsic properties of TnC and its interactions with the other contractile proteins play a crucial role in modulating the binding of calcium to TnC in increasingly complex biochemical systems.


Journal of Biological Chemistry | 2012

The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac Troponin C

Sean C. Little; Brandon J. Biesiadecki; Ahmet Kilic; Robert S.D. Higgins; Paul M. L. Janssen; Jonathan P. Davis

Background: The rate-limiting step of cardiac muscle relaxation is not completely understood. Results: We were able to measure two proposed rate-limiting steps of relaxation in ventricular myofibrils. Conclusion: The rate of Ca2+ dissociation from troponin C may be rate-limiting during myofilament inactivation under physiological conditions. Significance: Strategies that target both troponin C and myosin will be needed to treat diastolic dysfunction. The rate-limiting step of cardiac muscle relaxation has been proposed to reside in the myofilament. Both the rates of cross-bridge detachment and Ca2+ dissociation from troponin C (TnC) have been hypothesized to rate-limit myofilament inactivation. In this study we used a fluorescent TnC to measure both the rate of Ca2+ dissociation from TnC and the rate of cross-bridge detachment from several different species of ventricular myofibrils. The fluorescently labeled TnC was sensitive to both Ca2+ dissociation and cross-bridge detachment at low Ca2+ (presence of EGTA), allowing for a direct comparison between the two proposed rates of myofilament inactivation. Unlike Ca2+ dissociation from TnC, cross-bridge detachment varied in myofibrils from different species and was rate-limited by ADP release. At subphysiological temperatures (<20 °C), the rate of Ca2+ dissociation from TnC was faster than the rate of cross-bridge detachment in the presence of ADP. These results support the hypothesis that cross-bridge detachment rate-limits relaxation. However, Ca2+ dissociation from TnC was not as temperature-sensitive as cross-bridge detachment. At a near physiological temperature (35 °C) and ADP, the rate of cross-bridge detachment may actually be faster than the rate of Ca2+ dissociation. This provides evidence that there may not be a simple, single rate-limiting step of myofilament inactivation.


Circulation | 2015

Dysfunction in the βII Spectrin–Dependent Cytoskeleton Underlies Human Arrhythmia

Sakima A. Smith; Amy C. Sturm; Jerry Curran; Crystal F. Kline; Sean C. Little; Ingrid M. Bonilla; Victor P. Long; Michael A. Makara; Iuliia Polina; Langston D. Hughes; Tyler R. Webb; Zhiyi Wei; Patrick J. Wright; Niels Voigt; Deepak Bhakta; Katherine G. Spoonamore; Chuansheng Zhang; Raul Weiss; Philip F. Binkley; Paul M. L. Janssen; Ahmet Kilic; Robert S.D. Higgins; Mingzhai Sun; Jianjie Ma; Dobromir Dobrev; Mingjie Zhang; Cynthia A. Carnes; Matteo Vatta; Matthew N. Rasband; Thomas J. Hund

Background— The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked to cardiac pathologies, including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction and cardiac electric activity is not well understood and often overlooked in the cardiac arrhythmia field. Methods and Results— Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that &bgr;II spectrin, an actin-associated molecule, is essential for the posttranslational targeting and localization of critical membrane proteins in heart. &bgr;II spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/&bgr;II spectrin interaction, leading to severe human arrhythmia phenotypes. Mice lacking cardiac &bgr;II spectrin display lethal arrhythmias, aberrant electric and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, &bgr;II spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes, including the Na/Ca exchanger, ryanodine receptor 2, ankyrin-B, actin, and &agr;II spectrin. Finally, we observe accelerated heart failure phenotypes in &bgr;II spectrin–deficient mice. Conclusions— Our findings identify &bgr;II spectrin as critical for normal myocyte electric activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology.


Circulation Research | 2014

EHD3-Dependent Endosome Pathway Regulates Cardiac Membrane Excitability and Physiology

Jerry Curran; Michael A. Makara; Sean C. Little; Hassan Musa; Bin Liu; Xiangqiong Wu; Iuliia Polina; Joseph S. Alecusan; Patrick J. Wright; Jingdong Li; George E. Billman; Penelope A. Boyden; Sandor Gyorke; Hamid Band; Thomas J. Hund; Peter J. Mohler

Rationale: Cardiac function is dependent on the coordinate activities of membrane ion channels, transporters, pumps, and hormone receptors to tune the membrane electrochemical gradient dynamically in response to acute and chronic stress. Although our knowledge of membrane proteins has rapidly advanced during the past decade, our understanding of the subcellular pathways governing the trafficking and localization of integral membrane proteins is limited and essentially unstudied in vivo. In the heart, to our knowledge, there are no in vivo mechanistic studies that directly link endosome-based machinery with cardiac physiology. Objective: To define the in vivo roles of endosome-based cellular machinery for cardiac membrane protein trafficking, myocyte excitability, and cardiac physiology. Methods and Results: We identify the endosome-based Eps15 homology domain 3 (EHD3) pathway as essential for cardiac physiology. EHD3-deficient hearts display structural and functional defects including bradycardia and rate variability, conduction block, and blunted response to adrenergic stimulation. Mechanistically, EHD3 is critical for membrane protein trafficking, because EHD3-deficient myocytes display reduced expression/localization of Na/Ca exchanger and L-type Ca channel type 1.2 with a parallel reduction in Na/Ca exchanger–mediated membrane current and Cav1.2-mediated membrane current. Functionally, EHD3-deficient myocytes show increased sarcoplasmic reticulum [Ca], increased spark frequency, and reduced expression/localization of ankyrin-B, a binding partner for EHD3 and Na/Ca exchanger. Finally, we show that in vivo EHD3-deficient defects are attributable to cardiac-specific roles of EHD3 because mice with cardiac-selective EHD3 deficiency demonstrate both structural and electric phenotypes. Conclusions: These data provide new insight into the critical role of endosome-based pathways in membrane protein targeting and cardiac physiology. EHD3 is a critical component of protein trafficking in heart and is essential for the proper membrane targeting of select cellular proteins that maintain excitability.


Journal of Molecular and Cellular Cardiology | 2014

Combined troponin I Ser-150 and Ser-23/24 phosphorylation sustains thin filament Ca2 + sensitivity and accelerates deactivation in an acidic environment

Benjamin R. Nixon; Shane D. Walton; Bo Zhang; Elizabeth A. Brundage; Sean C. Little; Mark T. Ziolo; Jonathan P. Davis; Brandon J. Biesiadecki

The binding of Ca(2+) to troponin C (TnC) in the troponin complex is a critical step regulating the thin filament, the actin-myosin interaction and cardiac contraction. Phosphorylation of the troponin complex is a key regulatory mechanism to match cardiac contraction to demand. Here we demonstrate that phosphorylation of the troponin I (TnI) subunit is simultaneously increased at Ser-150 and Ser-23/24 during in vivo myocardial ischemia. Myocardial ischemia decreases intracellular pH resulting in depressed binding of Ca(2+) to TnC and impaired contraction. To determine the pathological relevance of these simultaneous TnI phosphorylations we measured individual TnI Ser-150 (S150D), Ser-23/24 (S23/24D) and combined (S23/24/150D) pseudo-phosphorylation effects on thin filament regulation at acidic pH similar to that in myocardial ischemia. Results demonstrate that while acidic pH decreased thin filament Ca(2+) binding to TnC regardless of TnI composition, TnI S150D attenuated this decrease rendering it similar to non-phosphorylated TnI at normal pH. The dissociation of Ca(2+) from TnC was unaltered by pH such that TnI S150D remained slow, S23/24D remained accelerated and the combined S23/24/150D remained accelerated. This effect of the combined TnI Ser-150 and Ser-23/24 pseudo-phosphorylations to maintain Ca(2+) binding while accelerating Ca(2+) dissociation represents the first post-translational modification of troponin by phosphorylation to both accelerate thin filament deactivation and maintain Ca(2+) sensitive activation. These data suggest that TnI Ser-150 phosphorylation induced attenuation of the pH-dependent decrease in Ca(2+) sensitivity and its combination with Ser-23/24 phosphorylation to maintain accelerated thin filament deactivation may impart an adaptive role to preserve contraction during acidic ischemia pH without slowing relaxation.


Nature Communications | 2017

Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

Xiaoping Liu; Mohamed A. El-Mahdy; James Boslett; Saradhadevi Varadharaj; Craig Hemann; Tamer M. Abdelghany; Raed S. Ismail; Sean C. Little; Danlei Zhou; Le Thi Thanh Thuy; Norifumi Kawada; Jay L. Zweier

The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.

Collaboration


Dive into the Sean C. Little's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Hund

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Liu

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge