Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean C. Newcomer is active.

Publication


Featured researches published by Sean C. Newcomer.


Hypertension | 2009

Impact of Shear Rate Modulation on Vascular Function in Humans

T.M. Tinken; Dick H. J. Thijssen; Nicola D. Hopkins; Mark A. Black; Ellen A. Dawson; Christopher T. Minson; Sean C. Newcomer; M.H. Laughlin; N.T. Cable; Daniel J. Green

Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling, and bilateral handgrip exercise. During each intervention, a cuff inflated to 60 mm Hg was placed on 1 arm to unilaterally manipulate the shear rate stimulus. In the noncuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline flow-mediated dilation (4.6%, 6.9%, and 6.7%) increased similarly in response to heating, handgrip, and cycling (8.1%, 10.4%, and 8.9%, ANOVA; P<0.001, no interaction; P=0.89). In contrast, cuffed arm antegrade shear rate was lower than in the noncuffed arm for all of the conditions (P<0.05), and the increase in flow-mediated dilation was abolished in this arm (4.7%, 6.7%, and 6.1%; 2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding that may have relevance for the impact of different exercise interventions on vascular adaptation in humans.


The Journal of Physiology | 2004

Different vasodilator responses of human arms and legs

Sean C. Newcomer; Urs A. Leuenberger; Cynthia S. Hogeman; Brian Handly; David N. Proctor

Forearm vascular responses to intra‐arterial infusions of endothelium‐dependent and ‐independent vasodilators have been thoroughly characterized in humans. While the forearm is a well‐established experimental model for studying human vascular function, it is of limited consequence to systemic cardiovascular control owing to its small muscle mass and blood flow requirements. In the present study we determined whether these responses could be generalized to the leg. Based upon blood pressure differences between the leg and arm during upright posture, we hypothesized that the responsiveness to endothelium‐dependent vasodilators would be greater in the forearm than the leg. Brachial and femoral artery blood flow (Q, ultrasound Doppler) at rest and during intra‐arterial infusions of endothelium‐dependent (acetylcholine and substance P) and ‐independent (sodium nitroprusside) vasodilators were measured in eight healthy men (22–27 years old). Resting blood flows in the forearm before infusion of acetylcholine, substance P or sodium nitroprusside were 25 ± 4, 30 ± 7 and 29 ± 5 ml min−1, respectively, and in the leg were 370 ± 32, 409 ± 62 and 330 ± 30 ml min−1, respectively. At the highest infusion rate of acetylcholine (16 μg (100 ml tissue)−1 min−1) there was a greater (P < 0.05) increase in Q to the forearm (1864 ± 476%) than to the leg (569 ± 86%). Similarly, at the highest infusion rate of substance P (125 pg (100 ml tissue)−1 min−1) there was a greater (P < 0.05) increase in Q to the forearm (911 ± 286%) than to the leg (243 ± 58%). The responses to sodium nitroprusside (1 μg (100 ml tissue)−1 min−1) were also greater (P < 0.05) in the forearm (925 ± 164%) than in the leg (326 ± 65%). These data indicate that vascular responses to both endothelium‐dependent and ‐independent vasodilator agents are blunted in the leg compared to the forearm.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns

Jaume Padilla; Colin N. Young; Grant H. Simmons; Shekhar H. Deo; Sean C. Newcomer; John P. Sullivan; M. Harold Laughlin; Paul J. Fadel

Escalating evidence indicates that disturbed flow patterns, characterized by the presence of retrograde and oscillatory shear stress, induce a proatherogenic endothelial cell phenotype; however, the mechanisms underlying oscillatory shear profiles in peripheral conduit arteries are not fully understood. We tested the hypothesis that acute elevations in muscle sympathetic nerve activity (MSNA) are accompanied by increases in conduit artery retrograde and oscillatory shear. Fourteen healthy men (25 +/- 1 yr) performed three sympathoexcitatory maneuvers: graded lower body negative pressure (LBNP) from 0 to -40 Torr, cold pressor test (CPT), and 35% maximal voluntary contraction handgrip followed by postexercise ischemia (PEI). MSNA (microneurography; peroneal nerve), arterial blood pressure (finger photoplethysmography), and brachial artery velocity and diameter (duplex Doppler ultrasound) in the contralateral arm were recorded continuously. All maneuvers elicited significant increases in MSNA total activity from baseline (P < 0.05). Retrograde shear (-3.96 +/- 1.2 baseline vs. -8.15 +/- 1.8 s(-1), -40 LBNP, P < 0.05) and oscillatory shear index (0.09 +/- 0.02 baseline vs. 0.20 +/- 0.02 arbitrary units, -40 LBNP, P < 0.05) were progressively augmented during graded LBNP. In contrast, during CPT and PEI, in which MSNA and blood pressure were concomitantly increased (P < 0.05), minimal or no changes in retrograde and oscillatory shear were noted. These data suggest that acute elevations in MSNA are associated with an increase in conduit artery retrograde and oscillatory shear, an effect that may be influenced by concurrent increases in arterial blood pressure. Future studies should examine the complex interaction between MSNA, arterial blood pressure, and other potential modulatory factors of shear rate patterns.


Cardiovascular Ultrasound | 2008

Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus

Jaume Padilla; Blair D. Johnson; Sean C. Newcomer; Daniel P. Wilhite; Timothy D. Mickleborough; Alyce D. Fly; Kieren J. Mather; Janet P. Wallace

BackgroundNormalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability.MethodsFive different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation.ResultsOne-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p < 0.0001) across forearm occlusion durations. Differences in peak FMD were abolished when normalizing FMD to SSAUC (p = 0.785).ConclusionOur data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.


Journal of Vascular Research | 2009

Adjusting flow-mediated dilation for shear stress stimulus allows demonstration of endothelial dysfunction in a population with moderate cardiovascular risk

Jaume Padilla; Blair D. Johnson; Sean C. Newcomer; Daniel P. Wilhite; Timothy D. Mickleborough; Alyce D. Fly; Kieren J. Mather; Janet P. Wallace

Background/Aims: Although normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress (FMD:shear stress ratio) has been proposed to improve this measure of endothelial function, the clinical utility of FMD normalization has not yet been demonstrated. We tested (1) whether following conventional 5-min forearm occlusion, the FMD:shear stress ratio would discriminate a population with moderate cardiovascular risk (MR) from a low-risk (LR) population, and (2) whether the dose-response profile relating shear stress to FMD would be different between the 2 populations. Methods: Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 MR and 20 LR subjects by manipulating forearm cuff occlusion duration. Brachial artery diameters and velocities were measured via high-resolution ultrasound. To quantify the hyperemic stimulus, shear stress area under the curve was individually calculated for the duration of time-to-peak dilation. Results: Following 5-min of forearm occlusion, FMD:shear stress ratio (p = 0.041), but not FMD (p = 0.286), discriminated MR from LR. The slope of the shear stress-FMD regression line was lower in MR compared to the LR (p <0.001). Conclusion: The FMD:shear stress ratio distinguished reduced endothelial function in a population with MR. The dose-response profile of the shear stress-FMD relationship appears to differ between populations of distinct cardiovascular risk.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Impact of acute exposure to increased hydrostatic pressure and reduced shear rate on conduit artery endothelial function: a limb-specific response

Jaume Padilla; Ryan D. Sheldon; Diana M. Sitar; Sean C. Newcomer

Unlike quadrupeds, humans exhibit a larger hydrostatic pressure in the lower limbs compared with the upper limbs during a major part of the day. It is plausible that repeated episodes of elevated pressure in the legs may negatively impact the endothelium, hence contributing to the greater predisposition of atherosclerosis in the legs. We tested the hypothesis that an acute exposure to increased hydrostatic pressure would induce conduit artery endothelial dysfunction. In protocol 1, to mimic the hemodynamic environment of the leg, we subjected the brachial artery to a hydrostatic pressure gradient ( approximately 15 mmHg) by vertically hanging the arm for 3 h. Brachial artery flow-mediated dilation (FMD) was assessed in both arms before and following the intervention. In protocol 2, we directly evaluated popliteal artery FMD before and after a 3-h upright sitting (pressure gradient approximately 48 mmHg) and control (supine position) intervention. Our arm-hanging model effectively resembled the hemodynamic milieu (high pressure and low shear rate) present in the lower limbs during the seated position. Endothelium-dependent vasodilation at the brachial artery was attenuated following arm hanging (P < 0.05); however, contrary to our hypothesis, upright sitting did not have an impact on popliteal artery endothelial function (P > 0.05). These data suggest an intriguing vascular-specific response to increased hydrostatic pressure and reduced shear rate. Further efforts are needed to determine if this apparent protection of the leg vasculature against an acute hydrostatic challenge is attributable to posture-induced chronic adaptations.


Applied Physiology, Nutrition, and Metabolism | 2008

Vascular nitric oxide: effects of exercise training in animals

Richard M. McAllister; Sean C. Newcomer; M. Harold Laughlin

Exercise training is known to induce several adaptations in the cardiovascular system, one of which is increased skeletal muscle blood flow at maximal exercise. Improved muscle blood flow, in turn, could in part be accounted for by augmented endothelium-dependent, nitric oxide (NO)-mediated vasodilation. Studies have indeed demonstrated that endothelium-dependent, NO-mediated dilation of conductance-type vessels is augmented after endurance exercise training; recently, this adaptation has been extended into resistance-type vessels within rodent skeletal muscle. With the latter, however, it appears that only resistance vessels supplying muscle active during training sessions exhibit this adaptation. These findings in rats are in contrast to those from human studies, in which increased endothelium-dependent dilation has been observed in vasculatures not associated with elevated blood flow during exercise. Increased expression of endothelial NO synthase (eNOS) appears to underlie enhanced endothelium-dependent, NO-mediated dilation of both conductance and resistance vessels. Greater eNOS expression may also underlie the preventive and (or) rehabilitative effect(s) of exercise training on atherosclerosis, given that NO inhibits several steps of the atherosclerotic disease process. Thus, exercise training may induce adaptations that benefit both vasodilation and vascular health.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Effects of posture on shear rates in human brachial and superficial femoral arteries

Sean C. Newcomer; Charity L. Sauder; Nathan T. Kuipers; M. H. Laughlin; Chester A. Ray

Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 +/- 5, 91 +/- 11, and 97 +/- 13 s(-1)) compared with the superficial femoral (53 +/- 4, 39 +/- 77, and 44 +/- 5 s(-1)) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Differential vulnerability of skeletal muscle feed arteries to dysfunction in insulin resistance: impact of fiber type and daily activity.

Shawn B. Bender; Sean C. Newcomer; M. Harold Laughlin

Functional and structural heterogeneity exists among skeletal muscle vascular beds related, in part, to muscle fiber type composition. This study was designed to delineate whether the vulnerability to vascular dysfunction in insulin resistance is uniformly distributed among skeletal muscle vasculatures and whether physical activity modifies this vulnerability. Obese, hyperphagic Otsuka Long-Evans Tokushima fatty rats (20 wk old) were sedentary (OSED) or physically active (OPA; access to running wheels) and compared with age-matched sedentary Long-Evans Tokushima Otsuka (LSED) rats. Vascular responses were determined in isolated, pressurized feed arteries from fast-twitch gastrocnemius (GFAs) and slow-twitch soleus (SFAs) muscles. OSED animals were obese, insulin resistant, and hypertriglyceridemic, traits absent in LSED and OPA rats. GFAs from OSED animals exhibited depressed dilation to ACh, but not sodium nitroprusside, and enhanced vasoconstriction to endothelin-1 (ET-1), but not phenylephrine, compared with those in LSED. Immunoblot analysis suggests reduced endothelial nitric oxide synthase phosphorylation at Ser1177 and endothelin subtype A receptor expression in OSED GFAs. Physical activity prevented reduced nitric oxide-dependent dilation to ACh, but not enhanced ET-1 vasoconstriction, in GFA from OPA animals. Conversely, vasoreactivity of SFAs to ACh and ET-1 were principally similar in all groups, whereas dilation to sodium nitroprusside was enhanced in OSED and OPA rats. These data demonstrate, for the first time, that SFAs from insulin-resistant rats exhibit reduced vulnerability to dysfunction versus GFAs and that physical activity largely prevents GFA dysfunction. We conclude that these results demonstrate that vascular dysfunction associated with insulin resistance is heterogeneously distributed across skeletal muscle vasculatures related, in part, to muscle fiber type and activity level.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle

Bruno T. Roseguini; S. Mehmet Soylu; Jeffrey J. Whyte; H. T. Yang; Sean C. Newcomer; M. Harold Laughlin

Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

Collaboration


Dive into the Sean C. Newcomer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff A. Nessler

California State University San Marcos

View shared research outputs
Top Co-Authors

Avatar

David N. Proctor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet P. Wallace

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge