Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean C. Solomon is active.

Publication


Featured researches published by Sean C. Solomon.


Journal of Geophysical Research | 2001

Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars

David E. Smith; Maria T. Zuber; Herbert V. Frey; James B. Garvin; James W. Head; Duane O. Muhleman; Gordon H. Pettengill; Roger J. Phillips; Sean C. Solomon; H. Jay Zwally; W. Bruce Banerdt; Thomas C. Duxbury; Matthew P. Golombek; Frank G. Lemoine; Gregory A. Neumann; David D. Rowlands; Oded Aharonson; Peter G. Ford; A. Ivanov; C. L. Johnson; Patrick J. McGovern; James B. Abshire; Robert S. Afzal; Xiaoli Sun

The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planets center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained.


Science | 2013

The Crust of the Moon as Seen by GRAIL

Mark A. Wieczorek; Gregory A. Neumann; Francis Nimmo; Walter S. Kiefer; G. Jeffrey Taylor; H. Jay Melosh; Roger J. Phillips; Sean C. Solomon; Jeffrey C. Andrews-Hanna; Sami W. Asmar; Alexander S. Konopliv; Frank G. Lemoine; David E. Smith; Michael M. Watkins; James G. Williams; Maria T. Zuber

The Holy GRAIL? The gravity field of a planet provides a view of its interior and thermal history by revealing areas of different density. GRAIL, a pair of satellites that act as a highly sensitive gravimeter, began mapping the Moons gravity in early 2012. Three papers highlight some of the results from the primary mission. Zuber et al. (p. 668, published online 6 December) discuss the overall gravity field, which reveals several new tectonic and geologic features of the Moon. Impacts have worked to homogenize the density structure of the Moons upper crust while fracturing it extensively. Wieczorek et al. (p. 671, published online 6 December) show that the upper crust is 35 to 40 kilometers thick and less dense—and thus more porous—than previously thought. Finally, Andrews-Hanna et al. (p. 675, published online 6 December) show that the crust is cut by widespread magmatic dikes that may reflect a period of expansion early in the Moons history. The Moons gravity field shows that the lunar crust is less dense and more porous than was thought. High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moons highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.


Journal of Geophysical Research | 1996

The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes

Sean C. Solomon; Robert W. Portmann; Rolando R. Garcia; Larry W. Thomason; Lamont R. Poole; M. P. McCormick

Aerosol surface area distributions inferred from satelliteborne 1-μm extinction measurements are used as input to a two-dimensional model to study the effects of heterogeneous chemistry upon anthropogenic ozone depletion at northern midlatitudes. It is shown that short-term (interannual) and longer-term (decadal) changes in aerosols very likely played a substantial role along with trends in anthropogenic chlorine and bromine in both triggering the ozone losses observed at northern midlatitudes in the early 1980s and increasing the averaged long-term ozone depletions of the past decade or so. The use of observed aerosol distributions enhances the calculated ozone depletion due to halogen chemistry below about 25 km over much of the past decade, including many periods not generally thought to be affected by volcanic activity. Direct observations (especially the relationships of NO X /NO Y and ClO/Cl y ratios to aerosol content) confirm the key aspects of the model chemistry that is responsible for this behavior and demonstrate that aerosol changes alone are not a mechanism for ozone losses in the absence of anthropogenic halogen inputs to the stratosphere. It is also suggested that aerosol-induced ozone changes could be confused with 11-year solar cycle effects in some statistical analyses, resulting in an overestimate of the trends ascribed to solar activity. While the timing of the observed ozone changes over about the past 15 years is in remarkable agreement with the model predictions that explicitly include observed aerosol changes, their magnitude is about 50% larger than calculated. Possible chemical and dynamical causes of this discrepancy are explored. On the basis of this work, it is shown that the timing and magnitude of future ozone losses at midlatitudes in the northern hemisphere are likely to be strongly dependent upon volcanic aerosol variations as well as on future chlorine and bromine loading.


Planetary and Space Science | 2001

The MESSENGER mission to Mercury: Scientific objectives and implementation

Sean C. Solomon; Ralph L. McNutt; Robert E. Gold; Mario H. Acuna; D. N. Baker; William V. Boynton; Clark R. Chapman; Andrew F. Cheng; G. Gloeckler; James W. Head; S. M. Krimigis; William E. McClintock; Scott L. Murchie; Stanton J. Peale; Roger J. Phillips; Mark S. Robinson; James A. Slavin; David E. Smith; Robert G. Strom; Jacob I. Trombka; Maria T. Zuber

Abstract Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercurys anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercurys geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercurys core, and the processes controlling volatile species in Mercurys polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet–visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercurys exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.


Journal of Geophysical Research | 2002

Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution

Patrick J. McGovern; Sean C. Solomon; David E. Smith; Maria T. Zuber; Mark Simons; Mark A. Wieczorek; Roger J. Phillips; Gregory A. Neumann; Oded Aharonson; James W. Head

From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T_e) required to support the observed topographic load since the time of loading. We convert T_e to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary “shape”) in lieu of “topography” referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T_e values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.


Journal of Geophysical Research | 2000

Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30'N

Robert A. Dunn; Douglas R. Toomey; Sean C. Solomon

The seismic structure of the crust and shallow mantle beneath the East Pacific Rise near 9°3O′N is imaged by inverting P wave travel time data. Our tomographic results constrain for the first time the three-dimensional structure of the lower crust in this region and allow us to compare it to shallow crustal and mantle structure. The seismic structure is characterized by a low-velocity volume (LVV) that extends from 1.2 km depth below the seafloor into the mantle. The cross-axis width of the LVV is narrow in the crust (5–7 km) and broad in the mantle (∼18 km). Although the width of the top of the LVV is similar to previous estimates, its narrow shape at lower crustal depths and its significant widening in the mantle are previously unknown features of the rise velocity structure. In the rise-parallel direction the LVV varies in magnitude such that the lowest velocities are located between two minor rise axis discontinuities near 9°28′N and 9°35′N. From the seismic results we estimate the thermal structure and melt distribution beneath the rise. The thermal structure suggests that heat removal is relatively efficient throughout the crust yet inefficient at Moho and mantle depths. Estimates of the melt distribution indicate that magma accumulates at two levels in the magmatic system. One is at the top of the magmatic system and is capped by the shallow melt lens detected by seismic reflection surveys; the other is within the Moho transition zone and topmost portion of the mantle. The highest melt fractions occur within the upper reservoir, whereas the lower reservoir contains a lower melt fraction distributed over a broader area. By volume, however, there may be up to 40% more melt in the lower reservoir than in the upper reservoir. Along-axis variations in crustal melt content are similar to those in the mantle, supporting the hypothesis that the mantle, midway between the 9°28′N and 9°35′N devais, is presently delivering greater amounts of melt to the lower crust than to regions immediately to the north or south. We see no evidence (from seismic anisotropy) for diapiric mantle flow, suggesting that solid-state flow and melt migration are decoupled in the shallow mantle. Our results are not compatible with models that require a large, segment-scale redistribution of melt within the crust. Instead, our results imply that crustal magma chambers are replenished at closely spaced intervals along the rise.


Journal of Geophysical Research | 1992

Venus tectonics: An overview of Magellan observations

Sean C. Solomon; Suzanne E. Smrekar; D. L. Bindschadler; Robert E. Grimm; William M. Kaula; George E. McGill; Roger J. Phillips; R. Stephen Saunders; Gerald Schubert; Steven W. Squyres; Ellen R. Stofan

The nearly global radar imaging and altimetry measurements of the surface of Venus obtained by the Magellan spacecraft have revealed that deformational features of a wide variety of styles and spatial scales are nearly ubiquitous on the planet. Many areas of Venus record a superposition of different episodes of deformation and volcanism. This deformation is manifested both in areally distributed strain of modest magnitude, such as families of graben and wrinkle ridges at a few to a few tens of kilometers spacing in many plains regions, as well as in zones of concentrated lithospheric extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that even many local features reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts, which have characteristic widths and spacings of hundreds of kilometers, represent successive degrees of lithospheric shortening and crustal thickening. The mountain belts of Venus, as on Earth, show widespread evidence for lateral extension both during and following active crustal compression. Venus displays two principal geometrical variations on lithospheric extension: the quasi-circular coronae (75–2600 km diameter) and broad rises with linear rift zones having dimensions of hundreds to thousands of kilometers. Both are sites of significant volcanic flux, but horizontal displacements may be limited to only a few tens of kilometers. Few large-offset strike slip faults have been observed, but limited local horizontal shear is accommodated across many zones of crustal stretching or shortening. Several large-scale tectonic features have extremely steep topographic slopes (in excess of 20°–30°) over a 10-km horizontal scale; because of the tendency for such slopes to relax by ductile flow in the middle to lower crust, such regions are likely to be tectonically active. In general, the preserved record of global tectonics of Venus does not resemble oceanic plate tectonics on Earth, wherein large, rigid plates are separated by narrow zones of deformation along plate boundaries. Rather tectonic strain on Venus typically involves deformation distributed across broad zones tens to a few hundred kilometers wide separated by comparatively undeformed blocks having dimensions of hundreds of kilometers. These characteristics are shared with actively deforming continental regions on Earth. The styles and scales of tectonic deformation on Venus may be consequences of three differences from the Earth: (1) The absence of a hydrological cycle and significant erosion dictates that multiple episodes of deformation are typically well-preserved. (2) A high surface temperature and thus a significantly shallower onset of ductile behavior in the middle to lower crust gives rise to a rich spectrum of smaller-scale deformational features. (3) A strong coupling of mantle convection to the upper mantle portion of the lithosphere, probably because Venus lacks a mantle low-viscosity zone, leads to crustal stress fields that are coherent over large distances. The lack of a global system of tectonic plates on Venus is likely a combined consequence of a generally lesser strength and more limited horizontal mobility of the lithosphere than on Earth.


Science | 2011

The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry

Larry R. Nittler; Richard D. Starr; Shoshana Z. Weider; Timothy J. McCoy; William V. Boynton; Denton S. Ebel; Carolyn M. Ernst; Larry G. Evans; John O. Goldsten; David K. Hamara; D. J. Lawrence; Ralph L. McNutt; Charles E. Schlemm; Sean C. Solomon; Ann L. Sprague

Geochemical data show that the major rock-forming components of Mercury are characterized by high sulfur content. X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet’s surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury’s low and variable surface reflectance.


Nature | 1998

Seismic evidence for a lower-mantle origin of the Iceland plume

Yang Shen; Sean C. Solomon; Ingi Th. Bjarnason; Cecily J. Wolfe

Iceland, one of the most thoroughly investigated hotspots, is generally accepted to be the manifestation of an upwelling mantle plume. Yet whether the plume originates from the lower mantle or from a convective instability at a thermal boundary layer between the upper and lower mantle near 660 km depth, remains unconstrained. Tomographic inversions of body-wave delay times show that low seismic velocities extend to at least 400 km depth beneath central Iceland,, but cannot resolve structure at greater depth. Here we report lateral variations in the depths of compressional-to-shear wave conversions at the two seismic discontinuities marking the top and bottom of the mantle transition zone beneath Iceland. We find that the transition zone is 20 km thinner than in the average Earth beneath central and southern Iceland, but is of normal thickness beneath surrounding areas, a result indicative of a hot and narrow plume originating from the lower mantle.


Science | 2013

Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission

Maria T. Zuber; David E. Smith; Michael M. Watkins; Sami W. Asmar; Alexander S. Konopliv; Frank G. Lemoine; H. Jay Melosh; Gregory A. Neumann; Roger J. Phillips; Sean C. Solomon; Mark A. Wieczorek; J. G. Williams; Sander Goossens; Gerhard Kruizinga; Erwan Mazarico; Ryan S. Park; Dah-Ning Yuan

The Holy GRAIL? The gravity field of a planet provides a view of its interior and thermal history by revealing areas of different density. GRAIL, a pair of satellites that act as a highly sensitive gravimeter, began mapping the Moons gravity in early 2012. Three papers highlight some of the results from the primary mission. Zuber et al. (p. 668, published online 6 December) discuss the overall gravity field, which reveals several new tectonic and geologic features of the Moon. Impacts have worked to homogenize the density structure of the Moons upper crust while fracturing it extensively. Wieczorek et al. (p. 671, published online 6 December) show that the upper crust is 35 to 40 kilometers thick and less dense—and thus more porous—than previously thought. Finally, Andrews-Hanna et al. (p. 675, published online 6 December) show that the crust is cut by widespread magmatic dikes that may reflect a period of expansion early in the Moons history. The Moons gravity field reveals that impacts have homogenized the density of the crust and fractured it extensively. Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.

Collaboration


Dive into the Sean C. Solomon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haje Korth

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria T. Zuber

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ralph L. McNutt

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roger J. Phillips

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory A. Neumann

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge