Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean C. Warren is active.

Publication


Featured researches published by Sean C. Warren.


PLOS ONE | 2013

Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

Sean C. Warren; Anca Margineanu; Dominic Alibhai; Douglas J. Kelly; Clifford Talbot; Yuriy Alexandrov; Ian Munro; Matilda Katan; Christopher Dunsby; Paul M. W. French

Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.


ChemPhysChem | 2011

FLIM FRET Technology for Drug Discovery: Automated Multiwell-Plate High-Content Analysis, Multiplexed Readouts and Application in Situ

Sunil Kumar; Dominic Alibhai; Anca Margineanu; Romain Laine; Gordon T. Kennedy; James J McGinty; Sean C. Warren; Douglas J. Kelly; Yuriy Alexandrov; Ian Munro; Clifford Talbot; Daniel W. Stuckey; Christopher Kimberly; Bertrand Viellerobe; Francois Lacombe; Eric Lam; Harriet B. Taylor; Margaret J. Dallman; Gordon Stamp; Edward J. Murray; Frank Stuhmeier; Alessandro Sardini; Matilda Katan; Daniel S. Elson; Mark A. A. Neil; Christopher Dunsby; Paul M. W. French

A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated.


Science Translational Medicine | 2017

Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

Claire Vennin; Venessa T. Chin; Sean C. Warren; Morghan C. Lucas; David Herrmann; Astrid Magenau; Pauline Mélénec; Stacey N. Walters; Gonzalo del Monte-Nieto; James R.W. Conway; Max Nobis; Amr H. Allam; Rachael A. McCloy; Nicola Currey; Mark Pinese; Alice Boulghourjian; Anaiis Zaratzian; Arne A. S. Adam; Celine Heu; Adnan Nagrial; Angela Chou; Angela Steinmann; Alison Drury; Danielle Froio; Marc Giry-Laterriere; Nathanial L. E. Harris; Tri Giang Phan; Rohit Jain; Wolfgang Weninger; Ewan J. McGhee

Fine-tuned manipulation of tumor tension and vasculature enhances response to chemotherapy and impairs metastatic spread in pancreatic cancer. ROCK-ing pancreatic cancer to the core Pancreatic cancer, one of the most deadly and difficult-to-treat tumor types in patients, usually has a dense stroma that can be difficult for drugs to penetrate. Stromal characteristics can also affect multiple other aspects of tumor biology, including metastatic spread, vascular supply, and immune response. Vennin et al. used Fasudil, a drug that inhibits a protein called ROCK and is already used for some conditions in people, to demonstrate the feasibility including short-term tumor stroma remodeling as part of cancer treatment. In genetically engineered and patient-derived mouse models of pancreatic cancer, priming with Fasudil disrupted the tumors’ extracellular matrix and improved the effectiveness of subsequent treatment with standard-of-care chemotherapy for this disease. The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.


PLOS ONE | 2012

Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas.

Rakesh Patalay; Clifford Talbot; Yuriy Alexandrov; Martin O. Lenz; Sunil Kumar; Sean C. Warren; Ian Munro; Mark A. A. Neil; Karsten König; Paul M. W. French; A.C. Chu; Gordon Stamp; Christopher Dunsby

We present the first detailed study using multispectral multiphoton fluorescence lifetime imaging to differentiate basal cell carcinoma cells (BCCs) from normal keratinocytes. Images were acquired from 19 freshly excised BCCs and 27 samples of normal skin (in & ex vivo). Features from fluorescence lifetime images were used to discriminate BCCs with a sensitivity/specificity of 79%/93% respectively. A mosaic of BCC fluorescence lifetime images covering >1 mm2 is also presented, demonstrating the potential for tumour margin delineation. Using 10,462 manually segmented cells from the image data, we quantify the cellular morphology and spectroscopic differences between BCCs and normal skin for the first time. Statistically significant increases were found in the fluorescence lifetimes of cells from BCCs in all spectral channels, ranging from 19.9% (425–515 nm spectral emission) to 39.8% (620–655 nm emission). A discriminant analysis based diagnostic algorithm allowed the fraction of cells classified as malignant to be calculated for each patient. This yielded a receiver operator characteristic area under the curve for the detection of BCC of 0.83. We have used both morphological and spectroscopic parameters to discriminate BCC from normal skin, and provide a comprehensive base for how this technique could be used for BCC assessment in clinical practice.


IEEE Journal of Selected Topics in Quantum Electronics | 2016

Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre

Youngchan Kim; Sean C. Warren; James M. Stone; Jonathan C. Knight; Mark A. A. Neil; Carl Paterson; Christopher Dunsby; Paul M. W. French

We present a laser scanning multiphoton endomicroscope with no distal optics or mechanical components that incorporates a polarization-maintaining (PM) multicore optical fibre to deliver, focus, and scan ultrashort pulsed radiation for two-photon excited fluorescence imaging. We show theoretically that the use of a PM multicore fibre in our experimental configuration enhances the fluorescence excitation intensity achieved in the focal spot compared to a non-PM optical fibre with the same geometry and confirm this by computer simulations based on numerical wavefront propagation. In our experimental system, a spatial light modulator (SLM) is utilised to program the phase of the light input to each of the cores of the endoscope fibre such that the radiation emerging from the distal end of the fibre interferes to provide the focused scanning excitation beam. We demonstrate that the SLM can enable dynamic phase correction of path-length variations across the multicore optical fibre whilst the fibre is perturbed with an update rate of 100 Hz.


Cell Reports | 2016

Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue

Zahra Erami; David Herrmann; Sean C. Warren; Max Nobis; Ewan J. McGhee; Morghan C. Lucas; Wilfred Leung; Nadine Reischmann; Agata Mrowinska; Juliane P. Schwarz; Shereen Kadir; James R.W. Conway; Claire Vennin; Saadia A. Karim; Andrew D. Campbell; David Gallego-Ortega; Astrid Magenau; Kendelle J. Murphy; Rachel A. Ridgway; Andrew M. K. Law; Stacey N. Walters; Shane T. Grey; David R. Croucher; Lei Zhang; Herbert Herzog; Edna C. Hardeman; Peter Gunning; Christopher J. Ormandy; T.R. Jeffry Evans; Douglas Strathdee

Summary E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.


Proceedings of SPIE | 2012

Euclid Mission: building of a reference survey

Jérôme Amiaux; R. Scaramella; Y. Mellier; B. Altieri; C. Burigana; Antonio da Silva; P. Gomez; John Hoar; R. J. Laureijs; Eugenio Maiorano; D. Magalhães Oliveira; F. Renk; G. Saavedra Criado; I. Tereno; Jean-Louis Augueres; Jarle Brinchmann; Mark Cropper; Ludovic Duvet; A. Ealet; P. Franzetti; B. Garilli; P. Gondoin; L. Guzzo; Henk Hoekstra; Rory Holmes; Knud Jahnke; T. D. Kitching; Massimo Meneghetti; Will J. Percival; Sean C. Warren

Euclid is an ESA Cosmic-Vision wide-field-space mission which is designed to explain the origin of the acceleration of Universe expansion. The mission will investigate at the same time two primary cosmological probes: Weak gravitational Lensing (WL) and Galaxy Clustering (in particular Baryon Acoustic Oscillations, BAO). The extreme precision requested on primary science objectives can only be achieved by observing a large number of galaxies distributed over the whole sky in order to probe the distribution of dark matter and galaxies at all scales. The extreme accuracy needed requires observation from space to limit all observational biases in the measurements. The definition of the Euclid survey, aiming at detecting billions of galaxies over 15 000 square degrees of the extragalactic sky, is a key parameter of the mission. It drives its scientific potential, its duration and the mass of the spacecraft. The construction of a Reference Survey derives from the high level science requirements for a Wide and a Deep survey. The definition of a main sequence of observations and the associated calibrations were indeed a major achievement of the Definition Phase. Implementation of this sequence demonstrated the feasibility of covering the requested area in less than 6 years while taking into account the overheads of space segment observing and maneuvering sequence. This reference mission will be used for sizing the spacecraft consumables needed for primary science. It will also set the framework for optimizing the time on the sky to fulfill the primary science and maximize the Euclid legacy.


Optics Express | 2011

Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging

Clifford Talbot; R Patalay; Ian Munro; Sean C. Warren; F Ratto; P Matteini; R Pini; Hans Georg Breunig; Karsten König; A.C. Chu; Gordon Stamp; Mark A. A. Neil; P. M. W. French; Christopher Dunsby

When performing multiphoton fluorescence lifetime imaging in multiple spectral emission channels, an instrument response function must be acquired in each channel if accurate measurements of complex fluorescence decays are to be performed. Although this can be achieved using the reference reconvolution technique, it is difficult to identify suitable fluorophores with a mono-exponential fluorescence decay across a broad emission spectrum. We present a solution to this problem by measuring the IRF using the ultrafast luminescence from gold nanorods. We show that ultrafast gold nanorod luminescence allows the IRF to be directly obtained in multiple spectral channels simultaneously across a wide spectral range. We validate this approach by presenting an analysis of multispectral autofluorescence FLIM data obtained from human skin ex vivo.


Journal of Biophotonics | 2013

Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation

Dominic Alibhai; Douglas J. Kelly; Sean C. Warren; Sunil Kumar; Anca Margineau; Remigiusz A. Serwa; Emmanuelle Thinon; Yuriy Alexandrov; Edward J. Murray; Frank Stuhmeier; Edward W. Tate; Mark A. A. Neil; Christopher Dunsby; Paul M. W. French

Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z ′ factors exceeding 0.6 are realised for this FLIM FRET assay. Fluorescence lifetime plate map with representative images of high and low FRET cells and corresponding dose response plot.


International Journal of Molecular Sciences | 2015

Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.

Sean C. Warren; Anca Margineanu; Matilda Katan; Christopher Dunsby; Paul M. W. French

Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation.

Collaboration


Dive into the Sean C. Warren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil Kumar

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Herrmann

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Munro

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge