Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean L. Hill is active.

Publication


Featured researches published by Sean L. Hill.


Cell | 2015

Reconstruction and Simulation of Neocortical Microcircuitry

Henry Markram; Eilif Muller; Srikanth Ramaswamy; Michael W. Reimann; Marwan Abdellah; Carlos Aguado Sanchez; Anastasia Ailamaki; Lidia Alonso-Nanclares; Nicolas Antille; Selim Arsever; Guy Antoine Atenekeng Kahou; Thomas K. Berger; Ahmet Bilgili; Nenad Buncic; Athanassia Chalimourda; Giuseppe Chindemi; Jean Denis Courcol; Fabien Delalondre; Vincent Delattre; Shaul Druckmann; Raphael Dumusc; James Dynes; Stefan Eilemann; Eyal Gal; Michael Emiel Gevaert; Jean Pierre Ghobril; Albert Gidon; Joe W. Graham; Anirudh Gupta; Valentin Haenel

UNLABELLED We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP VIDEO ABSTRACT.


PLOS Computational Biology | 2011

Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties

Etay Hay; Sean L. Hill; Felix Schürmann; Henry Markram; Idan Segev

The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na+-spiking behavior as well as key dendritic active properties, including Ca2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits

Sean L. Hill; Yun Wang; Imad Riachi; Felix Schürmann; Henry Markram

It is well-established that synapse formation involves highly selective chemospecific mechanisms, but how neuron arbors are positioned before synapse formation remains unclear. Using 3D reconstructions of 298 neocortical cells of different types (including nest basket, small basket, large basket, bitufted, pyramidal, and Martinotti cells), we constructed a structural model of a cortical microcircuit, in which cells of different types were independently and randomly placed. We compared the positions of physical appositions resulting from the incidental overlap of axonal and dendritic arbors in the model (statistical structural connectivity) with the positions of putative functional synapses (functional synaptic connectivity) in 90 synaptic connections reconstructed from cortical slice preparations. Overall, we found that statistical connectivity predicted an average of 74 ± 2.7% (mean ± SEM) synapse location distributions for nine types of cortical connections. This finding suggests that chemospecific attractive and repulsive mechanisms generally do not result in pairwise-specific connectivity. In some cases, however, the predicted distributions do not match precisely, indicating that chemospecific steering and aligning of the arbors may occur for some types of connections. This finding suggests that random alignment of axonal and dendritic arbors provides a sufficient foundation for specific functional connectivity to emerge in local neural microcircuits.


Neuron | 2015

BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images

Hanchuan Peng; Michael Hawrylycz; Jane Roskams; Sean L. Hill; Nelson Spruston; Erik Meijering; Giorgio A. Ascoli

Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.


Biological Cybernetics | 2008

Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data

Shaul Druckmann; Thomas K. Berger; Sean L. Hill; Felix Schürmann; Henry Markram; Idan Segev

Neuron models, in particular conductance-based compartmental models, often have numerous parameters that cannot be directly determined experimentally and must be constrained by an optimization procedure. A common practice in evaluating the utility of such procedures is using a previously developed model to generate surrogate data (e.g., traces of spikes following step current pulses) and then challenging the algorithm to recover the original parameters (e.g., the value of maximal ion channel conductances) that were used to generate the data. In this fashion, the success or failure of the model fitting procedure to find the original parameters can be easily determined. Here we show that some model fitting procedures that provide an excellent fit in the case of such model-to-model comparisons provide ill-balanced results when applied to experimental data. The main reason is that surrogate and experimental data test different aspects of the algorithm’s function. When considering model-generated surrogate data, the algorithm is required to locate a perfect solution that is known to exist. In contrast, when considering experimental target data, there is no guarantee that a perfect solution is part of the search space. In this case, the optimization procedure must rank all imperfect approximations and ultimately select the best approximation. This aspect is not tested at all when considering surrogate data since at least one perfect solution is known to exist (the original parameters) making all approximations unnecessary. Furthermore, we demonstrate that distance functions based on extracting a set of features from the target data (such as time-to-first-spike, spike width, spike frequency, etc.)—rather than using the original data (e.g., the whole spike trace) as the target for fitting—are capable of finding imperfect solutions that are good approximations of the experimental data.


Ibm Journal of Research and Development | 2008

Identifying, tabulating, and analyzing contacts between branched neuron morphologies

James R. Kozloski; Konstantinos Sfyrakis; Sean L. Hill; Felix Schürmann; Charles C. Peck; Henry Markram

Simulating neural tissue requires the construction of models of the anatomical structure and physiological function of neural microcircuitry. The Blue Brain Project is simulating the microcircuitry of a neocortical column with very high structural and physiological precision. This paper describes how we model anatomical structure by identfying, tabulating, and analyzing contacts between 104 neurons in a morphologically precise model of a column. A contact occurs when one element touches another, providing the opportunity for the subsequent creation of a simulated synapse. The architecture of our application divides the problem of detecting and analyzing contacts among thousands of processors on the IBM Blue Gene/L™ supercomputer. Data required for contact tabulation is encoded with geometrical data for contact detection and is exchanged among processors. Each processor selects a subset of neurons and then iteratively 1) divides the number of points that represents each neuron among column subvolumes, 2) detects contacts in a subvolume, 3) tabulates arbitrary categories of local contacts, 4) aggregates and analyzes global contacts, and 5) revises the contents of a column to achieve a statistical objective. Computing, analyzing, and optimizing local data in parallel across distributed global data objects involve problems common to other domains (such as three-dimensional image processing and registration). Thus, we discuss the generic nature of the application architecture.


Frontiers in Neural Circuits | 2015

The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex.

Srikanth Ramaswamy; Jean-Denis Courcol; Marwan Abdellah; Stanisław Adaszewski; Nicolas Antille; Selim Arsever; Guy Atenekeng; Ahmet Bilgili; Yury Brukau; Athanassia Chalimourda; Giuseppe Chindemi; Fabien Delalondre; Raphael Dumusc; Stefan Eilemann; Michael Emiel Gevaert; Padraig Gleeson; Joe W. Graham; Juan Hernando; Lida Kanari; Yury Katkov; Daniel Keller; James G. King; Rajnish Ranjan; Michael W. Reimann; Christian Rössert; Ying Shi; Julian C. Shillcock; Martin Telefont; Werner Van Geit; Jafet Villafranca Díaz

We have established a multi-constraint, data-driven process to digitally reconstruct, and simulate prototypical neocortical microcircuitry, using sparse experimental data. We applied this process to reconstruct the microcircuitry of the somatosensory cortex in juvenile rat at the cellular and synaptic levels. The resulting reconstruction is broadly consistent with current knowledge about the neocortical microcircuit and provides an array of predictions on its structure and function. To engage the community in exploring, challenging, and refining the reconstruction, we have developed a collaborative, internet-accessible facility-the Neocortical Microcircuit Collaboration portal (NMC portal; https://bbp.epfl.ch/nmc-portal). The NMC portal allows users to access the experimental data used in the reconstruction process, download cellular and synaptic models, and analyze the predicted properties of the microcircuit: six layers, similar to 31,000 neurons, 55 morphological types, 11 electrical types, 207 morpho-electrical types, 1941 unique synaptic connection types between neurons of specific morphological types, predicted properties for the anatomy and physiology of similar to 40 million intrinsic synapses. It also provides data supporting comparison of the anatomy and physiology of the reconstructed microcircuit against results in the literature. The portal aims to catalyzee consensus on the cellular and synaptic organization of neocortical microcircuitry (ion channel, neuron and synapse types and distributions, connectivity, etc.). Community feedback will contribute to refined versions of the reconstruction to be released periodically. We consider that the reconstructions and the simulations they enable represent a major step in the development of in silica neuroscience.


Frontiers in Neuroinformatics | 2011

Channelpedia: an integrative and interactive database for ion channels.

Rajnish Ranjan; Georges Khazen; Luca Gambazzi; Srikanth Ramaswamy; Sean L. Hill; Felix Schürmann; Henry Markram

Ion channels are membrane proteins that selectively conduct ions across the cell membrane. The flux of ions through ion channels drives electrical and biochemical processes in cells and plays a critical role in shaping the electrical properties of neurons. During the past three decades, extensive research has been carried out to characterize the molecular, structural, and biophysical properties of ion channels. This research has begun to elucidate the role of ion channels in neuronal function and has subsequently led to the development of computational models of ion channel function. Although there have been substantial efforts to consolidate these findings into easily accessible and coherent online resources, a single comprehensive resource is still lacking. The success of these initiatives has been hindered by the sheer diversity of approaches and the variety in data formats. Here, we present “Channelpedia” (http://channelpedia.net), which is designed to store information related to ion channels and models and is characterized by an efficient information management framework. Composed of a combination of a database and a wiki-like discussion platform Channelpedia allows researchers to collaborate and synthesize ion channel information from literature. Equipped to automatically update references, Channelpedia integrates and highlights recent publications with relevant information in the database. It is web based, freely accessible and currently contains 187 annotated ion channels with 45 Hodgkin–Huxley models.


PLOS Computational Biology | 2011

Effective Stimuli for Constructing Reliable Neuron Models

Shaul Druckmann; Thomas K. Berger; Felix Schürmann; Sean L. Hill; Henry Markram; Idan Segev

The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neurons dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neurons dynamics as attested by their ability to generalize well to the neurons response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose.


Cerebral Cortex | 2013

A Hierarchical Structure of Cortical Interneuron Electrical Diversity Revealed by Automated Statistical Analysis

Shaul Druckmann; Sean L. Hill; Felix Schürmann; Henry Markram; Idan Segev

Although the diversity of cortical interneuron electrical properties is well recognized, the number of distinct electrical types (e-types) is still a matter of debate. Recently, descriptions of interneuron variability were standardized by multiple laboratories on the basis of a subjective classification scheme as set out by the Petilla convention (Petilla Interneuron Nomenclature Group, PING). Here, we present a quantitative, statistical analysis of a database of nearly five hundred neurons manually annotated according to the PING nomenclature. For each cell, 38 features were extracted from responses to suprathreshold current stimuli and statistically analyzed to examine whether cortical interneurons subdivide into e-types. We showed that the partitioning into different e-types is indeed the major component of data variability. The analysis suggests refining the PING e-type classification to be hierarchical, whereby most variability is first captured within a coarse subpartition, and then subsequently divided into finer subpartitions. The coarse partition matches the well-known partitioning of interneurons into fast spiking and adapting cells. Finer subpartitions match the burst, continuous, and delayed subtypes. Additionally, our analysis enabled the ranking of features according to their ability to differentiate among e-types. We showed that our quantitative e-type assignment is more than 90% accurate and manages to catch several human errors.

Collaboration


Dive into the Sean L. Hill's collaboration.

Top Co-Authors

Avatar

Henry Markram

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Felix Schürmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Idan Segev

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shaul Druckmann

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

James G. King

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michael W. Reimann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Srikanth Ramaswamy

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Berger

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jean-Cédric Chappelier

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Martin Telefont

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge