Sean M. Couch
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean M. Couch.
The Astrophysical Journal | 2013
Sean M. Couch
We present 1D, 2D, and 3D hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L_crit) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L_crit at fixed mass accretion rate is somewhat higher in 3D than in 2D. We find, however, that in 2D L_crit increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the average entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in 2D. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in 2D and 3D. We discuss the balance between neutrino-driven-buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plumes surface area while the buoyant force is proportional to a plumes volume and, therefore, plumes with greater volume-to-surface area ratios will rise more quickly. We show that buoyant plumes in 2D are inherently larger, with greater volume-to-surface area ratios, than plumes in 3D. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L_crit increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.
The Astrophysical Journal | 2013
Sean M. Couch; Christian D. Ott
Multi-dimensional simulations of advanced nuclear burning stages of massive stars suggest that the Si/O layers of presupernova stars harbor large deviations from the spherical symmetry typically assumed for presupernova stellar structure. We carry out three-dimensional core-collapse supernova simulations with and without aspherical velocity perturbations to assess their potential impact on the supernova hydrodynamics in the stalled-shock phase. Our results show that realistic perturbations can qualitatively alter the postbounce evolution, triggering an explosion in a model that fails to explode without them. This finding underlines the need for a multi-dimensional treatment of the presupernova stage of stellar evolution.
The Astrophysical Journal | 2015
Sean M. Couch; Emmanouil Chatzopoulos; W. David Arnett; F. X. Timmes
We present the first three dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We self-consistently capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical (Chandrasekhar) mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion (turbulent fluctuations) generated by 3D convection is substantial at the point of collapse. We examine the impact of such physically-realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage. We conclude that non-spherical progenitor structure should not be ignored, and has a significant and favorable impact on the likelihood for neutrino-driven explosions.
The Astrophysical Journal | 2011
Sean M. Couch; David Aaron Pooley; J. Craig Wheeler; Milos Milosavljevic
Shock breakout is the earliest, readily observable emission from a core-collapse supernova (SN) explosion. Observing SN shock breakout may yield information about the nature of the SN shock prior to exiting the progenitor and, in turn, about the core-collapse SN mechanism itself. X-ray outburst 080109, later associated with SN 2008D, is a very well-observed example of shock breakout from a core-collapse SN. Despite excellent observational coverage and detailed modeling, fundamental information about the shock breakout, such as the radius of breakout and driver of the light curve timescale, is still uncertain. The models constructed for explaining the shock breakout emission from SN 2008D all assume spherical symmetry. We present a study of the observational characteristics of aspherical shock breakout from stripped-envelope core-collapse SNe surrounded by a wind. We conduct two-dimensional, jet-driven SN simulations from stripped-envelope progenitors and calculate the resulting shock breakout X-ray spectra and light curves. The X-ray spectra evolve significantly in time as the shocks expand outward and are not fit well by single-temperature and radius blackbodies. The timescale of the X-ray burst light curve of the shock breakout is related to the shock crossing time of the progenitor, and not to the much shorter light crossing time that sets the light curve timescale in spherical breakouts. This could explain the long shock breakout light curve timescale observed for XRO 080109/SN 2008D. We also comment on the distribution of intermediate-mass elements in asymmetric explosions.
The Astrophysical Journal | 2015
Viktoriya S. Morozova; Anthony L. Piro; M. Renzo; Christian D. Ott; Drew Clausen; Sean M. Couch; Justin Ellis; Luke F. Roberts
We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming black body emission. As a first application of SNEC, we consider the explosions of a grid of 15 Msun (at zero-age main sequence) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ~20-100 days if >~1.5-2 Msun of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for Type IIP supernovae in nature, it suggests that, at least for zero-age main sequence masses <~ 20 Msun, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for Type IIL supernovae, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for Type IIb supernovae, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ~500 Rsun.
The Astrophysical Journal | 2013
Emmanouil Chatzopoulos; J. Craig Wheeler; Sean M. Couch
We study the effects of rotation on the dynamics, energetics, and 56Ni production of pair instability supernova (PISN) explosions by performing rotating two-dimensional (2.5D) hydrodynamics simulations. We calculate the evolution of eight low-metallicity (Z = 10–3, 10–4 Z ☉) massive (135-245 M ☉) PISN progenitors with initial surface rotational velocities of 50% of the critical Keplerian value using the stellar evolution code MESA. We allow for both the inclusion and the omission of the effects of magnetic fields in the angular momentum transport and in chemical mixing, resulting in slowly rotating and rapidly rotating final carbon-oxygen cores, respectively. Increased rotation for carbon-oxygen cores of the same mass and chemical stratification leads to less energetic PISN explosions that produce smaller amounts of 56Ni due to the effect of the angular momentum barrier that develops and slows the dynamical collapse. We find a non-monotonic dependence of 56Ni production on rotational velocity in situations when smoother composition gradients form at the outer edge of the rotating cores. In these cases, the PISN energetics are determined by the competition of two factors: the extent of chemical mixing in the outer layers of the core due to the effects of rotation in the progenitor evolution and the development of angular momentum support against collapse. Our 2.5D PISN simulations with rotation are the first presented in the literature. They reveal hydrodynamic instabilities in several regions of the exploding star and increased explosion asymmetries with higher core rotational velocity.
The Astrophysical Journal | 2010
Haldan N. Cohn; Phyllis M. Lugger; Sean M. Couch; Jay Anderson; Adrienne Margaret Cool; Maureen van den Berg; S. Bogdanov; Craig O. Heinke; Jonathan E. Grindlay
We have searched for optical identifications for 79 Chandra X-ray sources that lie within the half-mass radius of the nearby, core-collapsed globular cluster NGC 6397, using deep Hubble Space Telescope Advanced Camera for Surveys Wide Field Channel imaging in Hα, R, and B. Photometry of these images allows us to classify candidate counterparts based on color-magnitude diagram location. In addition to recovering nine previously detected cataclysmic variables (CVs), we have identified six additional faint CV candidates, a total of 42 active binaries (ABs), two millisecond pulsars, one candidate active galactic nucleus, and one candidate interacting galaxy pair. Of the 79 sources, 69 have a plausible optical counterpart. The 15 likely and possible CVs in NGC 6397 mostly fall into two groups: a brighter group of six for which the optical emission is dominated by contributions from the secondary and accretion disk and a fainter group of seven for which the white dwarf dominates the optical emission. There are two possible transitional objects that lie between these groups. The faintest CVs likely lie near the minimum of the CV period distribution, where an accumulation is expected. The spatial distribution of the brighter CVs is much more centrally concentrated than those of the fainter CVs and the ABs. This may represent the result of an evolutionary process in which CVs are produced by dynamical interactions, such as exchange reactions, near the cluster center and are scattered to larger orbital radii, over their lifetimes, as they age and become fainter.
The Astrophysical Journal | 2016
David Radice; Christian D. Ott; Ernazar Abdikamalov; Sean M. Couch; Roland Haas
We present results from high-resolution semi-global simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parametrized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in re-distributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downwards transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of non-radial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artefact. Kolmogorov scaling is progressively recovered as the resolution is increased.
Computational Astrophysics and Cosmology | 2015
David Radice; Sean M. Couch; Christian D. Ott
In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. The ILES approach has been applied to different contexts, with varying degrees of success. It is the de-facto standard in many astrophysical simulations and in particular in studies of core-collapse supernovae (CCSN). Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. Anisotropy, in particular, could impact the dissipative properties of the flow and enhance the turbulent pressure in the radial direction, favouring the explosion. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic turbulence. Our simulations employ several different methods and span a wide range of resolutions. We report a detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a Kolmogorov k−5/3
The Astrophysical Journal | 2013
Sean M. Couch; Carlo Alberto Graziani; Norbert Flocke
k^{-5/3}