Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean M. Wiggins is active.

Publication


Featured researches published by Sean M. Wiggins.


Journal of the Acoustical Society of America | 2006

Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California

Mark A. McDonald; John A. Hildebrand; Sean M. Wiggins

Recent measurement at a previously studied location illustrates the magnitude of increases in ocean ambient noise in the Northeast Pacific over the past four decades. Continuous measurements west of San Nicolas Island, California, over 138 days, spanning 2003-2004 are compared to measurements made during the 1960s at the same site. Ambient noise levels at 30-50 Hz were 10-12 dB higher (95% CI = 2.6 dB) in 2003-2004 than in 1964-1966, suggesting an average noise increase rate of 2.5-3 dB per decade. Above 50 Hz the noise level differences between recording periods gradually diminished to only 1-3 dB at 100-300 Hz. Above 300 Hz the 1964-1966 ambient noise levels were higher than in 2003-2004, owing to a diel component which was absent in the more recent data. Low frequency (10-50 Hz) ocean ambient noise levels are closely related to shipping vessel traffic. The number of commercial vessels plying the worlds oceans approximately doubled between 1965 and 2003 and the gross tonnage quadrupled, with a corresponding increase in horsepower. Increases in commercial shipping are believed to account for the observed low-frequency ambient noise increase.


Journal of the Acoustical Society of America | 2012

Underwater radiated noise from modern commercial ships.

Megan F. McKenna; Donald Ross; Sean M. Wiggins; John A. Hildebrand

Underwater radiated noise measurements for seven types of modern commercial ships during normal operating conditions are presented. Calibrated acoustic data (<1000 Hz) from an autonomous seafloor-mounted acoustic recorder were combined with ship passage information from the Automatic Identification System. This approach allowed for detailed measurements (i.e., source level, sound exposure level, and transmission range) on ships of opportunity. A key result was different acoustic levels and spectral shapes observed from different ship-types. A 54 kGT container ship had the highest broadband source level at 188 dB re 1 μPa@1m; a 26 kGT chemical tanker had the lowest at 177 dB re 1 μPa@1m. Bulk carriers had higher source levels near 100 Hz, while container ship and tanker noise was predominantly below 40 Hz. Simple models to predict source levels of modern merchant ships as a group from particular ship characteristics (e.g., length, gross tonnage, and speed) were not possible given individual ship-type differences. Furthermore, ship noise was observed to radiate asymmetrically. Stern aspect noise levels are 5 to 10 dB higher than bow aspect noise levels. Collectively, these results emphasize the importance of including modern ship-types in quantifying shipping noise for predictive models of global, regional, and local marine environments.


Journal of the Acoustical Society of America | 2007

Blue and fin whale call source levels and propagation range in the Southern Ocean

Ana Širović; John A. Hildebrand; Sean M. Wiggins

Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multipath arrivals of their calls, was up to 56 km. The error in range measurements was 3.8 km using hyperbolic localization, and 3.4 km using multipath arrivals. Both species produced high-intensity calls; the average blue whale call source level was 189+/-3 dB re:1 microPa-1 m over 25-29 Hz, and the average fin whale call source level was 189+/-4 dB re:1 microPa-1 m over 15-28 Hz. Blue and fin whale populations in the Southern Ocean have remained at low numbers for decades since they became protected; using source level and detection range from passive acoustic recordings can help in calculating the relative density of calling whales.


Journal of the Acoustical Society of America | 2008

Classification of Risso’s and Pacific white-sided dolphins using spectral properties of echolocation clicks

Melissa S. Soldevilla; E. Elizabeth Henderson; Gregory S. Campbell; Sean M. Wiggins; John A. Hildebrand; Marie A. Roch

The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common (Delphinus delphis), long-beaked common (D. capensis), Rissos (Grampus griseus), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose (Tursiops truncatus) dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Rissos dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Rissos dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24-35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined (1-100 kHz).


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2008

Anatomic geometry of sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).

Ted W. Cranford; Megan F. McKenna; Melissa S. Soldevilla; Sean M. Wiggins; Jeremy A. Goldbogen; Robert E. Shadwick; Petr Krysl; Judy St. Leger; John A. Hildebrand

This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuviers beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal.


Marine Technology Society Journal | 2003

Autonomous Acoustic Recording Packages (ARPs) for Long-Term Monitoring of Whale Sounds

Sean M. Wiggins

Advancements in low-power and high-data capacity computer technology during the past decade have been adapted to autonomously record acoustic data from vocalizing whales over long time periods. Acoustic monitoring of whales has advantages over traditional visual surveys including greater detection ranges, continuous long-term monitoring in remote locations and in various weather conditions, and lower cost. An autonomous acoustic recording package (ARP) is described that uses a tethered hydrophone above a seafloor-mounted instrument frame. ARPs have been deployed to record baleen whale sounds in the Bering Sea, off the coast of southern California, near the West Antarctic Peninsula, and near Hawaii. ARP data have provided new information on the seasonal presence, abundance, call character, and patterns of vocalizing whales. Current development is underway for a broader-band, higher-data capacity system capable of recording odontocete whales, dolphins, and porpoises for long time periods.


Journal of the Acoustical Society of America | 2008

A 50 year comparison of ambient ocean noise near San Clemente Island: A bathymetrically complex coastal region off Southern California.

Mark A. McDonald; John A. Hildebrand; Sean M. Wiggins; Donald Ross

Repeated ocean ambient noise measurements at a shallow water (110 m) site near San Clemente Island reveal little increase in noise levels in the absence of local ships. Navy reports document ambient noise levels at this site in 1958-1959 and 1963-1964 and a seafloor recorder documents noise during 2005-2006. When noise from local ships was excluded from the 2005-2006 recordings, median sound levels were essentially the same as were observed in 1958 and 1963. Local ship noise, however, was present in 31% of the recordings in 1963 but was present in 89% of the recordings in 2005-2006. Median levels including local ships are 6-9 dB higher than median levels chosen from times when local ship noise was absent. Biological sounds and the sound of wind driven waves controlled ambient noise levels in the absence of local ships. The median noise levels at this site are low for an open water site due to the poor acoustic propagation and low average wind speeds. The quiet nature of this site in the absence of local ships allows correlation of wind speed to wave noise across the 10-220 Hz spectral band of this study.


Biology Letters | 2008

Temporal patterns in the acoustic signals of beaked whales at Cross Seamount

David W. Johnston; Mark A. McDonald; J Polovina; R Domokos; Sean M. Wiggins; John A. Hildebrand

Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.


Aquatic Mammals | 2005

Blue Whale (Balaenoptera musculus) Diel Call Patterns Offshore of Southern California

Sean M. Wiggins; Erin M. Oleson; Mark A. McDonald; John A. Hildebrand

Diel and seasonal calling patterns for blue whales (Balaenoptera musculus) were observed in coastal waters off southern California using seafloormounted autonomous acoustic recording packages (ARPs). Automated call counting from spectrogram cross-correlation showed peak seasonal calling in late summer/early fall. When call counts were organized by daily time intervals, calling peaks were observed during twilight periods, just after sunset and before sunrise. Minimum calling was observed during the day. Nighttime calling was greater than daytime calling, but also showed a minimum between the dusk and dawn calling peaks. These peaks correlate with the vertical migration times of krill, the blue whales’ primary prey. One hypothesis to explain these diel variations is that blue whale calling and foraging may be mutually exclusive activities. Fewer calls are produced during the day while prey are aggregated at depth and foraging is efficient. More calls are produced during the twilight time periods when prey are vertically migrating and at night when prey are dispersed near the sea surface and foraging is less efficient.


Journal of the Acoustical Society of America | 2010

Spatial and temporal patterns of Risso's dolphin echolocation in the Southern California Bight.

Melissa S. Soldevilla; Sean M. Wiggins; John A. Hildebrand

Geographical and temporal trends in echolocation clicking activity can lead to insights into the foraging and migratory behaviors of pelagic dolphins. Using autonomous acoustic recording packages, the geographical, diel, and seasonal patterns of Rissos dolphin (Grampus griseus) echolocation click activity are described for six locations in the Southern California Bight between 2005 and 2007. Rissos dolphin echolocation click bouts are identified based on their unique spectral characteristics. Click bouts were identified on 739 of 1959 recording days at all 6 sites, with the majority occurring at nearshore sites. A significant diel pattern is evident in which both hourly occurrences of click bouts and click rates are higher at night than during the day. At all nearshore sites, Rissos dolphin clicks were identified year-round, with the highest daily occurrence at the southern end of Santa Catalina Island. Seasonal and interannual variabilities in occurrence were high across sites with peak occurrence in autumn of most years at most sites. These results suggest that Rissos dolphins forage at night and that the southern end of Santa Catalina Island represents an important habitat for Rissos dolphins throughout the year.

Collaboration


Dive into the Sean M. Wiggins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie A. Roch

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin M. Oleson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Ana Širović

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaitlin E. Frasier

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge