Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean P. J. Whelan is active.

Publication


Featured researches published by Sean P. J. Whelan.


Nature | 2011

Ebola virus entry requires the cholesterol transporter Niemann–Pick C1

Jan E. Carette; Matthijs Raaben; Anthony C. Wong; Andrew S. Herbert; Gregor Obernosterer; Nirupama Mulherkar; Ana I. Kuehne; Philip J. Kranzusch; April M. Griffin; Gordon Ruthel; Paola Dal Cin; John M. Dye; Sean P. J. Whelan; Kartik Chandran; Thijn R. Brummelkamp

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann–Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann–Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Nature | 2007

Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells

Tobias Junt; E. Ashley Moseman; Matteo Iannacone; Steffen Massberg; Philipp A. Lang; Marianne Boes; Katja Fink; Sarah E. Henrickson; Dmitry M. Shayakhmetov; Nelson C. Di Paolo; Nico van Rooijen; Thorsten R. Mempel; Sean P. J. Whelan; Ulrich H. von Andrian

Lymph nodes prevent the systemic dissemination of pathogens such as viruses that infect peripheral tissues after penetrating the body’s surface barriers. They are also the staging ground of adaptive immune responses to pathogen-derived antigens. It is unclear how virus particles are cleared from afferent lymph and presented to cognate B cells to induce antibody responses. Here we identify a population of CD11b+CD169+MHCII+ macrophages on the floor of the subcapsular sinus (SCS) and in the medulla of lymph nodes that capture viral particles within minutes after subcutaneous injection. Macrophages in the SCS translocated surface-bound viral particles across the SCS floor and presented them to migrating B cells in the underlying follicles. Selective depletion of these macrophages compromised local viral retention, exacerbated viraemia of the host, and impaired local B-cell activation. These findings indicate that CD169+ macrophages have a dual physiological function. They act as innate ‘flypaper’ by preventing the systemic spread of lymph-borne pathogens and as critical gatekeepers at the lymph–tissue interface that facilitate the recognition of particulate antigens by B cells and initiate humoral immune responses.


Cell | 2010

Peroxisomes are signaling platforms for antiviral innate immunity.

Evelyn Dixit; Steeve Boulant; Yijing Zhang; Amy S. Lee; Bennett O.V. Shum; Nir Hacohen; Zhijian J. Chen; Sean P. J. Whelan; Marc Fransen; Max L. Nibert; Giulio Superti-Furga; Jonathan C. Kagan

Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.


PLOS Pathogens | 2009

Vesicular Stomatitis Virus Enters Cells through Vesicles Incompletely Coated with Clathrin That Depend upon Actin for Internalization

David K. Cureton; Ramiro Massol; Saveez Saffarian; Tomas Kirchhausen; Sean P. J. Whelan

Many viruses that enter cells by clathrin-dependent endocytosis are significantly larger than the dimensions of a typical clathrin-coated vesicle. The mechanisms by which viruses co-opt the clathrin machinery for efficient internalization remain uncertain. Here we examined how clathrin-coated vesicles accommodate vesicular stomatitis virus (VSV) during its entry into cells. Using high-resolution imaging of the internalization of single viral particles into cells expressing fluorescent clathrin and adaptor molecules, we show that VSV enters cells through partially clathrin-coated vesicles. We found that on average, virus-containing vesicles contain more clathrin and clathrin adaptor molecules than conventional vesicles, but this increase is insufficient to permit full coating of the vesicle. We further show that virus-containing vesicles depend upon the actin machinery for their internalization. Specifically, we found that components of the actin machinery are recruited to virus-containing vesicles, and chemical inhibition of actin polymerization trapped viral particles in vesicles at the plasma membrane. By analysis of multiple independent virus internalization events, we show that VSV induces the nucleation of clathrin for its uptake, rather than depending upon random capture by formation of a clathrin-coated pit. This work provides new mechanistic insights into the process of virus internalization as well as uptake of unconventional cargo by the clathrin-dependent endocytic machinery.


Nature | 2010

Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus

Matteo Iannacone; E. Ashley Moseman; Elena Tonti; Lidia Bosurgi; Tobias Junt; Sarah E. Henrickson; Sean P. J. Whelan; Luca G. Guidotti; Ulrich H. von Andrian

Lymph nodes (LNs) capture microorganisms that breach the body’s external barriers and enter draining lymphatics, limiting the systemic spread of pathogens. Recent work has shown that CD11b+CD169+ macrophages, which populate the subcapsular sinus (SCS) of LNs, are critical for the clearance of viruses from the lymph and for initiating antiviral humoral immune responses. Here we show, using vesicular stomatitis virus (VSV), a relative of rabies virus transmitted by insect bites, that SCS macrophages perform a third vital function: they prevent lymph-borne neurotropic viruses from infecting the central nervous system (CNS). On local depletion of LN macrophages, about 60% of mice developed ascending paralysis and died 7–10 days after subcutaneous infection with a small dose of VSV, whereas macrophage-sufficient animals remained asymptomatic and cleared the virus. VSV gained access to the nervous system through peripheral nerves in macrophage-depleted LNs. In contrast, within macrophage-sufficient LNs VSV replicated preferentially in SCS macrophages but not in adjacent nerves. Removal of SCS macrophages did not compromise adaptive immune responses against VSV, but decreased type I interferon (IFN-I) production within infected LNs. VSV-infected macrophages recruited IFN-I-producing plasmacytoid dendritic cells to the SCS and in addition were a major source of IFN-I themselves. Experiments in bone marrow chimaeric mice revealed that IFN-I must act on both haematopoietic and stromal compartments, including the intranodal nerves, to prevent lethal infection with VSV. These results identify SCS macrophages as crucial gatekeepers to the CNS that prevent fatal viral invasion of the nervous system on peripheral infection.


The EMBO Journal | 2012

Ebola virus entry requires the host-programmed recognition of an intracellular receptor

Emily Happy Miller; Gregor Obernosterer; Matthijs Raaben; Andrew S. Herbert; Maika S. Deffieu; Anuja Krishnan; Esther Ndungo; Rohini G. Sandesara; Jan E. Carette; Ana I. Kuehne; Gordon Ruthel; Suzanne R. Pfeffer; John M. Dye; Sean P. J. Whelan; Thijn R. Brummelkamp; Kartik Chandran

Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann‐Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non‐permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single‐pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP–NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.


Science | 2013

Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry

Lucas T. Jae; Matthijs Raaben; Moniek Riemersma; Ellen van Beusekom; Vincent A. Blomen; Arno Velds; Ron M. Kerkhoven; Jan E. Carette; Haluk Topaloglu; Peter Meinecke; Marja W. Wessels; Dirk J. Lefeber; Sean P. J. Whelan; Hans van Bokhoven; Thijn R. Brummelkamp

Viruses and Congenital Disorders Mutations in genes involved in α-dystroglycan O-linked glycosylation result in posttranslation modifications associated with the congenital disease Walker-Warburg syndrome (WWS). This cellular modification is also required for efficient Lassa virus infection of cells. Jae et al. (p. 479, published online 21 March) screened for genes involved in O-glycosylation that affected Lassa virus infection and identified candidates involved in glycosylation. Individuals from different pedigrees exhibiting WWS had unique mutations among genes identified in the genetic screen. Thus, comprehensive forward genetic screens can be used to define the genetic architecture of a complex disease. Deficiencies in the glycosylation of α-dystroglycan interfere with Lassa virus entry and link to Walker-Warburg syndrome Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A broad-spectrum antiviral targeting entry of enveloped viruses

Mike C. Wolf; Alexander N. Freiberg; Tinghu Zhang; Zeynep Akyol-Ataman; Andrew Grock; Patrick Hong; Jianrong Li; Natalya F. Watson; Angela Q. Fang; Hector C. Aguilar; Matteo Porotto; Anna N. Honko; Robert Damoiseaux; John P. Miller; Sara E. Woodson; Steven Chantasirivisal; Vanessa Fontanes; Oscar A. Negrete; Paul Krogstad; Asim Dasgupta; Anne Moscona; Lisa E. Hensley; Sean P. J. Whelan; Kym F. Faull; Michael E. Jung; Benhur Lee

We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus–cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure–activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus–cell but not cell–cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus–cell fusion.


PLOS Pathogens | 2010

The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis.

David K. Cureton; Ramiro Massol; Sean P. J. Whelan; Tomas Kirchhausen

Microbial pathogens exploit the clathrin endocytic machinery to enter host cells. Vesicular stomatitis virus (VSV), an enveloped virus with bullet-shaped virions that measure 70×200 nm, enters cells by clathrin-dependent endocytosis. We showed previously that VSV particles exceed the capacity of typical clathrin-coated vesicles and instead enter through endocytic carriers that acquire a partial clathrin coat and require local actin filament assembly to complete vesicle budding and internalization. To understand why the actin system is required for VSV uptake, we compared the internalization mechanisms of VSV and its shorter (75 nm long) defective interfering particle, DI-T. By imaging the uptake of individual particles into live cells, we found that, as with parental virions, DI-T enters via the clathrin endocytic pathway. Unlike VSV, DI-T internalization occurs through complete clathrin-coated vesicles and does not require actin polymerization. Since VSV and DI-T particles display similar surface densities of the same attachment glycoprotein, we conclude that the physical properties of the particle dictate whether a virus-containing clathrin pit engages the actin system. We suggest that the elongated shape of a VSV particle prevents full enclosure by the clathrin coat and that stalling of coat assembly triggers recruitment of the actin machinery to finish the internalization process. Since some enveloped viruses have pleomorphic particle shapes and sizes, our work suggests that they may use altered modes of endocytic uptake. More generally, our findings show the importance of cargo geometry for specifying cellular entry modes, even when the receptor recognition properties of a ligand are maintained.


Journal of Virology | 2008

A Conserved Motif in Region V of the Large Polymerase Proteins of Nonsegmented Negative-Sense RNA Viruses That Is Essential for mRNA Capping

Jianrong Li; Amal A. Rahmeh; Sean P. J. Whelan

ABSTRACT Nonsegmented negative-sense (NNS) RNA viruses cap their mRNA by an unconventional mechanism. Specifically, 5′ monophosphate mRNA is transferred to GDP derived from GTP through a reaction that involves a covalent intermediate between the large polymerase protein L and mRNA. This polyribonucleotidyltransferase activity contrasts with all other capping reactions, which are catalyzed by an RNA triphosphatase and guanylyltransferase. In these reactions, a 5′ diphosphate mRNA is capped by transfer of GMP via a covalent enzyme-GMP intermediate. RNA guanylyltransferases typically have a KxDG motif in which the lysine forms this covalent intermediate. Consistent with the distinct mechanism of capping employed by NNS RNA viruses, such a motif is absent from L. To determine the residues of L protein required for capping, we reconstituted the capping reaction of the prototype NNS RNA virus, vesicular stomatitis virus, from highly purified components. Using a panel of L proteins with single-amino-acid substitutions to residues universally conserved among NNS RNA virus L proteins, we define a new motif, GxxT[n]HR, present within conserved region V of L protein that is essential for this unconventional mechanism of mRNA cap formation.

Collaboration


Dive into the Sean P. J. Whelan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Morin

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Herbert

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge