Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean P. McCormick is active.

Publication


Featured researches published by Sean P. McCormick.


Biochemistry | 2013

Iron Content of Saccharomyces cerevisiae Cells Grown under Iron-Deficient and Iron-Overload Conditions

Gregory P. Holmes-Hampton; Nema D. Jhurry; Sean P. McCormick; Paul A. Lindahl

Fermenting cells were grown under Fe-deficient and Fe-overload conditions, and their Fe contents were examined using biophysical spectroscopies. The high-affinity Fe import pathway was active only in Fe-deficient cells. Such cells contained ~150 μM Fe, distributed primarily into nonheme high-spin (NHHS) Fe(II) species and mitochondrial Fe. Most NHHS Fe(II) was not located in mitochondria, and its function is unknown. Mitochondria isolated from Fe-deficient cells contained [Fe(4)S(4)](2+) clusters, low- and high-spin hemes, S = (1)/(2) [Fe(2)S(2)](+) clusters, NHHS Fe(II) species, and [Fe(2)S(2)](2+) clusters. The presence of [Fe(2)S(2)](2+) clusters was unprecedented; their presence in previous samples was obscured by the spectroscopic signature of Fe(III) nanoparticles, which are absent in Fe-deficient cells. Whether Fe-deficient cells were grown under fermenting or respirofermenting conditions had no effect on Fe content; such cells prioritized their use of Fe to essential forms devoid of nanoparticles and vacuolar Fe. The majority of Mn ions in wild-type yeast cells was electron paramagnetic resonance-active Mn(II) and not located in mitochondria or vacuoles. Fermenting cells grown on Fe-sufficient and Fe-overloaded medium contained 400-450 μM Fe. In these cells, the concentration of nonmitochondrial NHHS Fe(II) declined 3-fold, relative to that in Fe-deficient cells, whereas the concentration of vacuolar NHHS Fe(III) increased to a limiting cellular concentration of ~300 μM. Isolated mitochondria contained more NHHS Fe(II) ions and substantial amounts of Fe(III) nanoparticles. The Fe contents of cells grown with excessive Fe in the medium were similar over a 250-fold change in nutrient Fe levels. The ability to limit Fe import prevents cells from becoming overloaded with Fe.


Biochemistry | 2015

The Human Iron–Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules

Nicholas G. Fox; Mrinmoy Chakrabarti; Sean P. McCormick; Paul A. Lindahl; David P. Barondeau

Iron-sulfur (Fe-S) clusters are essential protein cofactors for most life forms. In human mitochondria, the core Fe-S biosynthetic enzymatic complex (called SDUF) consists of NFS1, ISD11, ISCU2, and frataxin (FXN) protein components. Few mechanistic details about how this complex synthesizes Fe-S clusters and how these clusters are delivered to targets are known. Here circular dichroism and Mössbauer spectroscopies were used to reveal details of the Fe-S cluster assembly reaction on the SDUF complex. SDUF reactions generated [2Fe-2S] cluster intermediates that readily converted to stable [2Fe-2S] clusters bound to uncomplexed ISCU2. Similar reactions that included the apo Fe-S acceptor protein human ferredoxin (FDX1) resulted in formation of [2Fe-2S]-ISCU2 rather than [2Fe-2S]-FDX1. Subsequent addition of dithiothreitol (DTT) induced transfer of the cluster from ISCU2 to FDX1, suggesting that [2Fe-2S]-ISCU2 is an intermediate. Reactions that initially included DTT rapidly generated [2Fe-2S]-FDX1 and bypassed formation of [2Fe-2S]-ISCU2. In the absence of apo-FDX1, incubation of [2Fe-2S]-ISCU2 with DTT generated [4Fe-4S]-ISCU2 species. Together, these results conflict with a recent report of stable [4Fe-4S] cluster formation on the SDUF complex. Rather, they support a model in which SDUF builds transient [2Fe-2S] cluster intermediates that generate clusters on sulfur-containing molecules, including uncomplexed ISCU2. Additional small molecule or protein factors are required for the transfer of these clusters to Fe-S acceptor proteins or the synthesis of [4Fe-4S] clusters.


Biochemistry | 2011

Mössbauer and EPR Study of Iron in Vacuoles from Fermenting Saccharomyces cerevisiae

Allison L. Cockrell; Gregory P. Holmes-Hampton; Sean P. McCormick; Mrinmoy Chakrabarti; Paul A. Lindahl

Vacuoles were isolated from fermenting yeast cells grown on minimal medium supplemented with 40 μM (57)Fe. Absolute concentrations of Fe, Cu, Zn, Mn, Ca, and P in isolated vacuoles were determined by ICP-MS. Mössbauer spectra of isolated vacuoles were dominated by two spectral features: a mononuclear magnetically isolated high-spin (HS) Fe(III) species coordinated primarily by hard/ionic (mostly or exclusively oxygen) ligands and superparamagnetic Fe(III) oxyhydroxo nanoparticles. EPR spectra of isolated vacuoles exhibited a g(ave) ~ 4.3 signal typical of HS Fe(III) with E/D ~ 1/3. Chemical reduction of the HS Fe(III) species was possible, affording a Mössbauer quadrupole doublet with parameters consistent with O/N ligation. Vacuolar spectral features were present in whole fermenting yeast cells; however, quantitative comparisons indicated that Fe leaches out of vacuoles during isolation. The in vivo vacuolar Fe concentration was estimated to be ~1.2 mM while the Fe concentration of isolated vacuoles was ~220 μM. Mössbauer analysis of Fe(III) polyphosphate exhibited properties similar to those of vacuolar Fe. At the vacuolar pH of 5, Fe(III) polyphosphate was magnetically isolated, while at pH 7, it formed nanoparticles. This pH-dependent conversion was reversible. Fe(III) polyphosphate could also be reduced to the Fe(II) state, affording similar Mössbauer parameters to that of reduced vacuolar Fe. These results are insufficient to identify the exact coordination environment of the Fe(III) species in vacuoles, but they suggest a complex closely related to Fe(III) polyphosphate. A model for Fe trafficking into/out of yeast vacuoles is proposed.


Metallomics | 2012

Changing iron content of the mouse brain during development.

Gregory P. Holmes-Hampton; Mrinmoy Chakrabarti; Allison L. Cockrell; Sean P. McCormick; Louise C. Abbott; Lora S. Lindahl; Paul A. Lindahl

Iron is crucial to many processes in the brain yet the percentages of the major iron-containing species contained therein, and how these percentages change during development, have not been reliably determined. To do this, C57BL/6 mice were enriched in (57)Fe and their brains were examined by Mössbauer, EPR, and electronic absorption spectroscopy; Fe concentrations were evaluated using ICP-MS. Excluding the contribution of residual blood hemoglobin, the three major categories of brain Fe included ferritin (an iron storage protein), mitochondrial iron (consisting primarily of Fe/S clusters and hemes), and mononuclear nonheme high-spin (NHHS) Fe(II) and Fe(III) species. Brains from prenatal and one-week old mice were dominated by ferritin and were deficient in mitochondrial Fe. During the next few weeks of life, the brain grew and experienced a burst of mitochondriogenesis. Overall brain Fe concentration and the concentration of ferritin declined during this burst phase, suggesting that the rate of Fe incorporation was insufficient to accommodate these changes. The slow rate of Fe import and export to/from the brain, relative to other organs, was verified by an isotopic labeling study. Iron levels and ferritin stores replenished in young adult mice. NHHS Fe(II) species were observed in substantial levels in brains of several ages. A stable free-radical species that increased with age was observed by EPR spectroscopy. Brains from mice raised on an Fe-deficient diet showed depleted ferritin iron but normal mitochondrial iron levels.


Metallomics | 2013

Insights into the iron-ome and manganese-ome of Δmtm1 Saccharomyces cerevisiae mitochondria

Jinkyu Park; Sean P. McCormick; Mrinmoy Chakrabarti; Paul A. Lindahl

Biophysical spectroscopies and LC-ICP-MS were used to evaluate the iron-ome and manganese-ome of mitochondria from Δmtm1 yeast cells. Deleting the mitochondrial carrier gene MTM1 causes Fe to accumulate in mitochondria and Mn superoxide dismutase (SOD2) activity to decline. One explanation for this is that some accumulated Fe misincorporates into apo-Sod2p. Mössbauer spectroscopy revealed that most of the accumulated Fe was Fe(III) nanoparticles which are unlikely to misincorporate into apo-Sod2p. Under anaerobic conditions, Fe did not accumulate yet SOD2 activity remained low, suggesting that the two phenomena are independent. Mn concentrations were two-fold higher in Δmtm1 mitochondria than in WT mitochondria. Soluble extracts from such samples were subjected to size-exclusion LC and fractions were analyzed with an on-line ICP-MS. Two major Mn peaks were observed, one due to MnSod2p and the other to a Mn species with a mass of 2-3 kDa (called Mn2-3). Mn2-3 may deliver Mn into apo-Sod2p. Most Mn in WT mitochondria was associated with MnSod2p, whereas most Mn in Δmtm1 mitochondria was associated with Mn2-3. The [Mn2-3] increased in cells grown on high MnCl2 while the MnSod2p concentration remained unchanged. Corresponding Fe traces showed numerous peaks, including a complex of ~3 kDa which may be the form of Fe that misincorporates, and an Fe peak with the molecular mass of Sod2p that may correspond to FeSod2p. The intensity of this peak suggests that deleting MTM1 probably diminishes SOD2 activity by some means other than Fe misincorporation. A portion of Sod2p in Δmtm1 mitochondria might be unfolded or immature. Mtm1p may import a species required for apo-Sod2p maturation, activity or stability.


Biochemistry | 2013

Mössbauer Study and Modeling of Iron Import and Trafficking in Human Jurkat Cells

Nema D. Jhurry; Mrinmoy Chakrabarti; Sean P. McCormick; Vishal M. Gohil; Paul A. Lindahl

The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and Fe(III) citrate (FC) was characterized using Mössbauer, electron paramagnetic resonance, and UV-vis spectroscopies, as well as electron and inductively coupled plasma mass spectrometry. Isolated mitochondria were similarly characterized. Fe-limited cells contained ~100 μM essential Fe, mainly as mitochondrial Fe and nonmitochondrial non-heme high-spin Fe(II). Cells replete with Fe also contained ferritin-bound Fe and Fe(III) oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears to be more complex than is commonly assumed. The magnetic and structural properties of Jurkat nanoparticles differed from those of yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with reactive oxygen species (ROS) damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage, and generally contained more nanoparticles. Cells grown with TBI rather than FC contained less Fe overall, more ferritin, and fewer nanoparticles. Cells in which the level of transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable wild-type cells. Data were analyzed by a chemically based mathematical model. Although simple, it captured essential features of Fe import, trafficking, and regulation. TBI import was highly regulated, but FC import was not. Nanoparticle formation was not regulated, but the rate was third-order in cytosolic Fe.


Biochemistry | 2015

Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

Sean P. McCormick; Michael J. Moore; Paul A. Lindahl

Liquid chromatography was used with an online inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20-40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria, called Mn1100, had a mass of ∼1100 Da and a concentration of ∼2 μM. Mammalian mitochondria contained a second Mn species with a mass of ∼2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ∼580 Da; the concentration of Fe580 in mitochondria was ∼100 μM. When mitochondria were isolated from fermenting cells in postexponential phase, the mass of the dominant LMM Fe complex was ∼1100 Da. Upon incubation, the intensity of Fe1100 declined and that of Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and two other Fe species (Fe2000 and Fe1100) at concentrations of ∼50 μM each. The dominant LMM Zn species in mitochondria had a mass of ∼1200 Da and a concentration of ∼110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ∼5000 Da and a concentration in yeast mitochondria of ∼16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at a concentration of ∼1 μM. Increasing Mn, Fe, Cu, and Zn concentrations 10-fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free glutathione or glutathione disulfide.


Biochemistry | 2013

The lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes.

Jinkyu Park; Sean P. McCormick; Mrinmoy Chakrabarti; Paul A. Lindahl

Fermenting cells growing exponentially on rich (YPAD) medium underwent a transition to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell-growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transition period, the high-affinity Fe import rate declined slower than the cell-growth rate declined, causing Fe to accumulate, initially as Fe(III) oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once the cells had reached slow-growth mode, Fe import and cell-growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during the exponential phase and underwent a transition to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered the stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in the stationary state. Fe initially accumulated as nanoparticles and high-spin Fe(II) species, but vacuolar Fe(III) also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more reactive oxygen species (ROS) damage than younger cells, suggesting that the Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included the import of Fe via a regulated high-affinity pathway and an unregulated low-affinity pathway. The import of Fe from the cytosol to vacuoles and mitochondria and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of other cellular metabolites. This phenomenon likely derives from the unique chemistry associated with Fe nanoparticle formation.


Journal of Biological Chemistry | 2015

Kinetics of Iron Import into Developing Mouse Organs Determined by a Pup-swapping Method

Mrinmoy Chakrabarti; Mirza Nofil Barlas; Sean P. McCormick; Lora S. Lindahl; Paul A. Lindahl

Background: Rates of iron import from blood to developing organs were measured. Results: Two distinct iron species in the blood are imported. Conclusion: Nontransferrin-bound iron dominates the iron import process in young mice. Significance: The role of transferrin-bound iron in import should be reevaluated. The kinetics of dietary iron import into various organs of mice were evaluated using a novel pup-swapping approach. Newborn pups whose bodies primarily contained 56Fe or 57Fe were swapped at birth such that each nursed on milk containing the opposite isotope. A pup from each litter was euthanized weekly over a 7-week period. Blood plasma was obtained, and organs were isolated typically after flushing with Ringers buffer. 56Fe and 57Fe concentrations were determined for organs and plasma; organ volumes were also determined. Mössbauer spectra of equivalent 57Fe-enriched samples were used to quantify residual blood in organs; this fraction was excluded from later analysis. Rates of import into brain, spleen, heart, and kidneys were highest during the first 2 weeks of life. In contrast, half of iron in the newborn liver exited during that time, and influx peaked later. Two mathematical models were developed to analyze the import kinetics. The only model that simulated the data adequately assumed that an iron-containing species enters the plasma and converts into a second species and that both are independently imported into organs. Consistent with this, liquid chromatography with an on-line ICP-MS detector revealed numerous iron species in plasma besides transferrin. Model fitting required that the first species, assigned to non-transferrin-bound iron, imports faster into organs than the second, assigned to transferrin-bound-iron. Non-transferrin-bound iron rather than transferrin-bound-iron appears to play the dominant role in importing iron into organs during early development of healthy mice.


Biochemistry | 2014

Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.

Allison L. Cockrell; Sean P. McCormick; Michael J. Moore; Mrinmoy Chakrabarti; Paul A. Lindahl

Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species.

Collaboration


Dive into the Sean P. McCormick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge