Sean P. Parsons
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean P. Parsons.
Frontiers in Neuroscience | 2011
Jan D. Huizinga; Sarah Martz; Víctor Gil; Xuan-Yu Wang; Marcel Jiménez; Sean P. Parsons
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC–SMP) and those associated with the myenteric plexus (ICC–MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC–SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions (“rhythmic propagating ripples”) enhancing absorption. The ICC–MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity (“rhythmic propulsive motor complexes”). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
Nature Communications | 2014
Jan D. Huizinga; Ji-Hong Chen; Yong Fang Zhu; Andrew Pawelka; Ryan J. McGinn; Berj L. Bardakjian; Sean P. Parsons; Wolfgang A. Kunze; Richard You Wu; Premysl Bercik; Amir Khoshdel; Sifeng Chen; Sheng Yin; Qian Zhang; Yuanjie Yu; Qingmin Gao; Kongling Li; Xinghai Hu; Natalia Zarate; Phillip Collins; Marc Pistilli; Junling Ma; Ruixue Zhang; David J. Chen
The segmentation motor activity of the gut that facilitates absorption of nutrients, was first described in the late 19th century but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by ICC associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in ICC.
British Journal of Pharmacology | 2013
V Gil; Sean P. Parsons; D. Gallego; Jan D. Huizinga; Marcel Jiménez
Hydrogen sulphide (H2S) is an endogenous gaseous signalling molecule with putative functions in gastrointestinal motility regulation. Characterization of H2S effects on colonic motility is crucial to establish its potential use as therapeutic agent in the treatment of colonic disorders.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Sean P. Parsons; Jan D. Huizinga
Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators.
Pflügers Archiv: European Journal of Physiology | 2014
Yong Fang Zhu; Xuan-Yu Wang; Bobbi-Jo Lowie; Sean P. Parsons; Liz White; Wolfgang A. Kunze; Andrew Pawelka; Jan D. Huizinga
Enteric sensory neurons (the AH neurons) play a role in control of gastrointestinal motor activity; AH neuron activation has been proposed to change propulsion into segmentation. We sought to find a mechanism underlying this phenomenon. We formulated the hypothesis that AH neurons increase local ICC-MP (interstitial cells of Cajal associated with the myenteric plexus) pacemaker frequency to disrupt peristalsis and promote absorption. To that end, we sought structural and physiological evidence for communication between ICC-MP and AH neurons. We designed experiments that allowed us to simultaneously activate AH neurons and observe changes in ICC calcium transients that underlie its pacemaker activity. Neurobiotin injection in AH neurons together with ICC immunohistochemistry proved the presence of multiple contacts between AH neuron varicosities and the cell bodies and processes of ICC-MP. Generating action potential activity in AH neurons led to increase in the frequency and amplitude of calcium transients underlying pacemaker activity in ICC. When no rhythmicity was seen, rhythmic calcium transients were evoked in ICC. As a control, we stimulated nitrergic S neurons, which led to reduction in ICC calcium transients. Hence, we report here the first demonstration of communication between AH neurons and ICC. The following hypothesis can now be formulated: AH neuron activation can disrupt peristalsis directed by ICC-MP slow wave activity, through initiation of a local pacemaker by increasing ICC pacemaker frequency through increasing the frequency of ICC calcium transients. Evoking new pacemakers distal to the proximal lead pacemaker will initiate both retrograde and antegrade propulsion causing back and forth movements that may disrupt peristalsis.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2010
Sean P. Parsons; Jan D. Huizinga
Interstitial cells of Cajal (ICC) are the pacemakers of the gut, initiating slow-wave activity. Several ion channels have been identified that contribute to the depolarization phase of the slow wave. Our aim was to contribute to knowledge about the identity and role of ICC potassium channels in pacemaking. Here we describe a transient outward potassium current in cell-attached patches of ICC. This current was activated almost instantaneously at potentials positive of the resting membrane potential and inactivated as a single exponential or biexponential with time constants that varied widely from patch to patch. Averaged traces gave a biexponential inactivation with time constants of approximately 40 and approximately 500 ms, with no clear voltage dependence. Analysis of single-channel openings and closings indicated a channel conductance of 5 pS and permeability sequence of K(+) (111) > Na(+) (1) > N-methyl-d-glucamine(+) (0.11). The current was completely blocked by 20 microM clotrimazole but was unaffected by 20 microM ketoconazole, 10 microM E4031, or 20 microM clofilium; 5 mM 4-aminopyridine slowed the activation of the current. The transient outward current may be important in moderating the upstroke of the pacemaker potential.
American Journal of Physiology-cell Physiology | 2015
Jan D. Huizinga; Sean P. Parsons; Ji-Hong Chen; Andrew Pawelka; Marc Pistilli; Chunpei Li; Yuanjie Yu; Pengfei Ye; Qing Liu; Mengting Tong; Yong Fang Zhu; Defei Wei
Phase-amplitude coupling of two pacemaker activities of the small intestine, the omnipresent slow wave activity generated by interstitial cells of Cajal of the myenteric plexus (ICC-MP) and the stimulus-dependent rhythmic transient depolarizations generated by ICC of the deep muscular plexus (ICC-DMP), was recently hypothesized to underlie the orchestration of the segmentation motor pattern. The aim of the present study was to increase our understanding of phase-amplitude coupling through modeling. In particular the importance of propagation velocity of the ICC-DMP component was investigated. The outcome of the modeling was compared with motor patterns recorded from the rat or mouse intestine from which propagation velocities within the different patterns were measured. The results show that the classical segmentation motor pattern occurs when the ICC-DMP component has a low propagation velocity (<0.05 cm/s). When the ICC-DMP component has a propagation velocity in the same order of magnitude as that of the slow wave activity (∼1 cm/s), cluster type propulsive activity occurs which is in fact the dominant propulsive activity of the intestine. Hence, the only difference between the generation of propagating cluster contractions and the Cannon-type segmentation motor pattern is the propagation velocity of the low-frequency component, the rhythmic transient depolarizations originating from the ICC-DMP. Importantly, the proposed mechanism explains why both motor patterns have distinct rhythmic waxing and waning of the amplitude of contractions. The hypothesis is brought forward that the velocity is modulated by neural regulation of gap junction conductance within the ICC-DMP network.
Neurogastroenterology and Motility | 2010
Yong Fang Zhu; Sean P. Parsons; Jan D. Huizinga
Background Chloride channels are proposed to play a central role in the electrical pacemaking mechanism of interstitial cells of Cajal (ICC). A key unknown factor in the consideration of this role is the chloride equilibrium potential (ECl), as determined by the relative concentrations of intra‐ ([Cl−]i) and extracellular ([Cl−]o) chloride ions.
Neurogastroenterology and Motility | 2012
George W. J. Wright; Sean P. Parsons; Jan D. Huizinga
Background Interstitial cells of Cajal (ICC) associated with the myenteric plexus of the small intestine express maxi chloride channels. Our aim was to investigate whether or not these channels would be activated by increases in intracellular Ca2+, as that would strengthen evidence for their potential role in ICC pacemaking. A further aim was to examine whether inwardly and outwardly rectifying maxi chloride currents signify different channels.
Frontiers in Neuroscience | 2016
Sean P. Parsons; Jan D. Huizinga
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each others phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.