Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean R. Eddy is active.

Publication


Featured researches published by Sean R. Eddy.


Nucleic Acids Research | 2000

The Pfam protein families database

Marco Punta; Penny Coggill; Ruth Y. Eberhardt; Jaina Mistry; John G. Tate; Chris Boursnell; Kristoffer Forslund; Goran Ceric; Jody Clements; Andreas Heger; Liisa Holm; Erik L. L. Sonnhammer; Sean R. Eddy; Alex Bateman; Robert D. Finn

Pfam is a widely used database of protein families, currently containing more than 13 000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the ‘sunburst’ representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.


Bioinformatics | 1998

Profile hidden Markov models.

Sean R. Eddy

The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.


Archive | 1998

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

Richard Durbin; Sean R. Eddy; Anders Krogh; Graeme Mitchison

Probablistic models are becoming increasingly important in analyzing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analyzing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it is accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time presents the state of the art in this new and important field.


Nucleic Acids Research | 2014

Pfam: the protein families database

Robert D. Finn; Alex Bateman; Jody Clements; Penelope Coggill; Ruth Y. Eberhardt; Sean R. Eddy; Andreas Heger; Kirstie Hetherington; Liisa Holm; Jaina Mistry; Erik L. L. Sonnhammer; John G. Tate; Marco Punta

Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.


Nucleic Acids Research | 2006

Pfam: clans, web tools and services

Robert D. Finn; Jaina Mistry; Benjamin Schuster-Böckler; Sam Griffiths-Jones; Volker Hollich; Timo Lassmann; Simon Moxon; Mhairi Marshall; Ajay Khanna; Richard Durbin; Sean R. Eddy; Erik L. L. Sonnhammer; Alex Bateman

Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().


Nucleic Acids Research | 2011

HMMER web server: interactive sequence similarity searching

Robert D. Finn; Jody Clements; Sean R. Eddy

HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server (http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them.


Nucleic Acids Research | 2016

The Pfam protein families database: towards a more sustainable future

Robert D. Finn; Penelope Coggill; Ruth Y. Eberhardt; Sean R. Eddy; Jaina Mistry; Alex L. Mitchell; Simon Potter; Marco Punta; Matloob Qureshi; Amaia Sangrador-Vegas; Gustavo A. Salazar; John G. Tate; Alex Bateman

In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.


PLOS Computational Biology | 2011

Accelerated Profile HMM Searches

Sean R. Eddy

Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.


Nucleic Acids Research | 2004

Rfam: annotating non-coding RNAs in complete genomes

Sam Griffiths-Jones; Simon Moxon; Mhairi Marshall; Ajay Khanna; Sean R. Eddy; Alex Bateman

Rfam is a comprehensive collection of non-coding RNA (ncRNA) families, represented by multiple sequence alignments and profile stochastic context-free grammars. Rfam aims to facilitate the identification and classification of new members of known sequence families, and distributes annotation of ncRNAs in over 200 complete genome sequences. The data provide the first glimpses of conservation of multiple ncRNA families across a wide taxonomic range. A small number of large families are essential in all three kingdoms of life, with large numbers of smaller families specific to certain taxa. Recent improvements in the database are discussed, together with challenges for the future. Rfam is available on the Web at http://www.sanger.ac.uk/Software/Rfam/ and http://rfam.wustl.edu/.


Nucleic Acids Research | 2003

Rfam: an RNA family database

Sam Griffiths-Jones; Alex Bateman; Mhairi Marshall; Ajay Khanna; Sean R. Eddy

Rfam is a collection of multiple sequence alignments and covariance models representing non-coding RNA families. Rfam is available on the web in the UK at http://www.sanger.ac.uk/Software/Rfam/ and in the US at http://rfam.wustl.edu/. These websites allow the user to search a query sequence against a library of covariance models, and view multiple sequence alignments and family annotation. The database can also be downloaded in flatfile form and searched locally using the INFERNAL package (http://infernal.wustl.edu/). The first release of Rfam (1.0) contains 25 families, which annotate over 50 000 non-coding RNA genes in the taxonomic divisions of the EMBL nucleotide database.

Collaboration


Dive into the Sean R. Eddy's collaboration.

Top Co-Authors

Avatar

Alex Bateman

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Anders Krogh

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert D. Finn

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Eric P. Nawrocki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Jones

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Elena Rivas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John G. Tate

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge