Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean W. Cain is active.

Publication


Featured researches published by Sean W. Cain.


Science Translational Medicine | 2012

Adverse Metabolic Consequences in Humans of Prolonged Sleep Restriction Combined with Circadian Disruption

Orfeu M. Buxton; Sean W. Cain; Shawn P. O'Connor; James H. Porter; Jeanne F. Duffy; Wei Wang; Charles A. Czeisler; Steven Shea

Sleep deficiency and out-of-synch circadian rhythms impair pancreatic insulin secretion, a possible precursor to metabolic syndrome and diabetes. A Reason to Go to Bed on Time Our own experience tells us that getting too little sleep or traveling across multiple time zones can impair our ability to function. And people who work on the night shift or who habitually sleep too little are more likely to be obese or have diabetes. But what is it about these stresses that translate into faulty physiology? By simulating the life-style of a shift worker or world traveler in controlled laboratory conditions, Buxton et al. now find that prolonged, simultaneous disruption of our normal sleep and circadian rhythms affects the workings of our insulin-secreting pancreatic cells, creating a prediabetic state. And even worse, under these conditions, people show a drop in their resting metabolic rate that could translate into a yearly weight gain of more than 10 pounds. Getting a firm handle on the effects of life-style changes such as sleep, activity schedule, and diet on pancreatic function is much easier in small animals than humans. But Buxton et al. successfully investigated these questions by hosting 21 human participants in a completely controlled environment for almost 6 weeks and simulating disturbances in sleep and circadian rhythms, while keeping diet constant and scheduling all activities. Because sleep and circadian rhythms are intimately related, they designed a special protocol to independently manipulate these variables. After a stabilization segment in which the participants had adequate sleep at the appropriate time within their circadian rhythms, the participants spent 3 weeks in which they got only 5.6 hours of sleep per 24-hour period, while simultaneously experiencing 28-hour circadian days—a state similar to 4 hours of jet lag accumulating each day. During this time, the participants were often trying to sleep at unusual times within their circadian cycle. A segment of 9 recovery days followed. During the 3-week disruption, the participants’ glucose control went haywire, and they were unable to mount a sufficiently high insulin response after a meal, resulting in too much glucose in their blood, in some cases at a level considered prediabetic. This magnitude of disruption, coupled with a lower resting metabolic rate that also emerged during the 3 treatment weeks, could easily set the stage for development of diabetes and obesity, although the exact process by which this happens awaits further study. These results carry a cautionary message for employers to guard against causing adverse metabolic effects in workers by their shift scheduling practices—and a reinforcement of your mother’s message to go to bed on time and get enough sleep. Epidemiological studies link short sleep duration and circadian disruption with higher risk of metabolic syndrome and diabetes. We tested the hypotheses that prolonged sleep restriction with concurrent circadian disruption, as can occur in people performing shift work, impairs glucose regulation and metabolism. Healthy adults spent >5 weeks under controlled laboratory conditions in which they experienced an initial baseline segment of optimal sleep, 3 weeks of sleep restriction (5.6 hours of sleep per 24 hours) combined with circadian disruption (recurring 28-hour “days”), followed by 9 days of recovery sleep with circadian re-entrainment. Exposure to prolonged sleep restriction with concurrent circadian disruption, with measurements taken at the same circadian phase, decreased the participants’ resting metabolic rate and increased plasma glucose concentrations after a meal, an effect resulting from inadequate pancreatic insulin secretion. These parameters normalized during the 9 days of recovery sleep and stable circadian re-entrainment. Thus, in humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase the risk of obesity and diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sex difference in the near-24-hour intrinsic period of the human circadian timing system

Jeanne F. Duffy; Sean W. Cain; Anne-Marie Chang; Andrew J. K. Phillips; Mirjam Münch; Claude Gronfier; James K. Wyatt; Derk-Jan Dijk; Kenneth P. Wright; Charles A. Czeisler

The circadian rhythms of melatonin and body temperature are set to an earlier hour in women than in men, even when the women and men maintain nearly identical and consistent bedtimes and wake times. Moreover, women tend to wake up earlier than men and exhibit a greater preference for morning activities than men. Although the neurobiological mechanism underlying this sex difference in circadian alignment is unknown, multiple studies in nonhuman animals have demonstrated a sex difference in circadian period that could account for such a difference in circadian alignment between women and men. Whether a sex difference in intrinsic circadian period in humans underlies the difference in circadian alignment between men and women is unknown. We analyzed precise estimates of intrinsic circadian period collected from 157 individuals (52 women, 105 men; aged 18–74 y) studied in a month-long inpatient protocol designed to minimize confounding influences on circadian period estimation. Overall, the average intrinsic period of the melatonin and temperature rhythms in this population was very close to 24 h [24.15 ± 0.2 h (24 h 9 min ± 12 min)]. We further found that the intrinsic circadian period was significantly shorter in women [24.09 ± 0.2 h (24 h 5 min ± 12 min)] than in men [24.19 ± 0.2 h (24 h 11 min ± 12 min); P < 0.01] and that a significantly greater proportion of women have intrinsic circadian periods shorter than 24.0 h (35% vs. 14%; P < 0.01). The shorter average intrinsic circadian period observed in women may have implications for understanding sex differences in habitual sleep duration and insomnia prevalence.


Neuroscience | 2003

Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat

T.E Kippin; Sean W. Cain; James G. Pfaus

Olfactory stimuli play important roles in sexual behavior. Previous studies have demonstrated that both estrous odors and initially neutral odors paired with copulation influence the sexual behavior of male rats. The present study examines the pattern of neural activation as revealed by Fos immunoreactivity (Fos-IR) following exposure to bedding scented with either a neutral odor (almond) paired previously with copulation, estrous odors or no odor. Following exposure to estrous odors Fos-IR increased in the accessory olfactory bulb, medial amygdala, medial bed nucleus of the stria terminalis, medial preoptic area, ventromedial hypothalamus, ventral tegmental area, and both the nucleus accumbens core and shell. Conversely, following exposure to the sexually conditioned odor Fos-IR increased in the piriform cortex, basolateral amygdala, nucleus accumbens core, and the anterior portion of the lateral hypothalamic area. In addition, following exposure to almond odor Fos-IR increased in the main olfactory bulb independent of its pairing with copulation. These patterns of Fos-IR following exposure to estrous or sexually conditioned odors were not influenced by either the addition or omission of the other type of odor. These findings demonstrate that estrous and sexually conditioned odors are processed by distinct neural pathways and converge in the nucleus accumbens core, suggesting that this structure has a unique role in processing sexual stimuli of both pheromonal and olfactory natures.


Journal of Biological Rhythms | 2010

Sex differences in phase angle of entrainment and melatonin amplitude in humans.

Sean W. Cain; Christopher F. Dennison; Jamie M. Zeitzer; Aaron M. Guzik; Sat Bir S. Khalsa; Nayantara Santhi; Martin W. Schoen; Charles A. Czeisler; Jeanne F. Duffy

Studies of sex differences in the timing of human circadian rhythms have reported conflicting results. This may be because the studies conducted to date have not controlled for the masking effects of the rest activity cycle on the circadian rhythms being assessed. In the present analysis of data collected under controlled conditions, we examined sex differences in the timing of circadian rhythms while minimizing masking from behavioral and environmental factors using a constant routine (CR) protocol. All participants (28 women and 28 men paired by habitual wake time; age range, 18 30 years) maintained a regular self selected sleep wake schedule at home prior to the study. After 3 baseline days in the laboratory, participants began a CR. Women were found to have a signifi cantly higher melatonin amplitude and lower temperature amplitude than men. While sleep timing was the same between the 2 groups, the timing of the circa dian rhythms of core body temperature and pineal melatonin secretion was ear lier relative to sleep time in women as compared to men. Sleep therefore occurred at a later biological time for women than men, despite being at the same clock time. Given that sleep propensity and structure vary with circadian phase and are impacted by circulating melatonin, these findings may have important impli cations for understanding sex differences in sleep timing and duration, diurnal preference, and the prevalence of sleep disorders such as insomnia.


Neuron | 2004

Dexras1 Potentiates Photic and Suppresses Nonphotic Responses of the Circadian Clock

Hai-Ying M. Cheng; Karl Obrietan; Sean W. Cain; Bo Young Lee; Patricia V. Agostino; Nicholas Joza; Mary E. Harrington; Martin R. Ralph; Josef M. Penninger

Circadian rhythms of physiology and behavior are generated by biological clocks that are synchronized to the cyclic environment by photic or nonphotic cues. The interactions and integration of various entrainment pathways to the clock are poorly understood. Here, we show that the Ras-like G protein Dexras1 is a critical modulator of the responsiveness of the master clock to photic and nonphotic inputs. Genetic deletion of Dexras1 reduces photic entrainment by eliminating a pertussis-sensitive circadian response to NMDA. Mechanistically, Dexras1 couples NMDA and light input to Gi/o and ERK activation. In addition, the mutation greatly potentiates nonphotic responses to neuropeptide Y and unmasks a nonphotic response to arousal. Thus, Dexras1 modulates the responses of the master clock to photic and nonphotic stimuli in opposite directions. These results identify a signaling molecule that serves as a differential modulator of the gated photic and nonphotic input pathways to the circadian timekeeping system.


Neuroscience | 1999

Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus.

Shimon Amir; Sean W. Cain; J Sullivan; Barry Robinson; Jane Stewart

There is evidence to suggest that the olfactory and circadian systems are linked, functionally, and that olfactory stimuli can modulate circadian rhythms in mammals. Furthermore, olfactory bulb removal can alter free-running rhythms in animals housed in constant darkness and can attenuate the effect of social stimuli on photic entrainment of circadian rhythms. The mechanisms through which olfactory stimuli influence circadian rhythms are not known. One possibility is that olfactory stimuli influence circadian rhythms by modulating the activity of the circadian clock located in the hypothalamic suprachiasmatic nucleus. To study this, we assessed the effect of olfactory stimulation on free-running rhythms and on photic resetting of the circadian clock in rats using phase shifts in wheel-running rhythms and expression of the transcription factor Fos in the suprachiasmatic nucleus. We found that brief exposure to an olfactory stimulus, cedar wood essence, in the subjective day or subjective night had no effect on either free-running rhythms or Fos expression in the suprachiasmatic nucleus, but that when presented in combination with light, the odor dramatically enhanced light-induced phase shifts and Fos expression in the suprachiasmatic nucleus. Olfactory stimulation alone induced Fos expression in several structures that innervate the suprachiasmatic nucleus, pointing to ways by which stimulus information transmitted in the olfactory pathways could gain access to the suprachiasmatic nucleus to modulate photic resetting. These findings, showing that clock resetting by light can be facilitated by olfactory stimulation, point to a mechanism by which olfactory cues can modulate entrainment of circadian rhythms.


Neurobiology of Learning and Memory | 2004

Time of day modulation of conditioned place preference in rats depends on the strain of rat used

Sean W. Cain; Caroline H. Ko; Jennifer A. Chalmers; Martin R. Ralph

In golden hamsters, the expression of a conditioned place preference (CPP) or avoidance (CPA) is regulated in a circadian pattern such that the preference and avoidance are exhibited strongly at the circadian time of prior training, but not at other circadian times. In the rat, reports are conflicting regarding whether time of day learning is evident. We investigated whether this conflict arises because different strains of rat have been used. In this experiment, Long Evans and Wistar rats were trained at a specific circadian time to discriminate between a context paired with food reward and an unpaired context. Animals were then tested for preference at the same or a different circadian time. Long Evans rats showed preference for the paired context at both times tested, whereas Wistar rats showed preference only when training and testing times matched. The results show that time of day learning can be generalized to rats using the Wistar strain.


The Journal of Clinical Endocrinology and Metabolism | 2015

Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty

Stephanie J. Crowley; Sean W. Cain; Angus C. Burns; Christine Acebo; Mary A. Carskadon

CONTEXT Late adolescence is marked by a delay in sleep timing, which is partly driven by a delay shift of the circadian timing system. This study examined whether the sensitivity of the circadian system to light-the primary entraining stimulus to the circadian system-differs between pre- to mid-pubertal and late to postpubertal adolescents. OBJECTIVE The study was designed to determine the influence of puberty on the sensitivity of the circadian system to light in humans. METHODS Melatonin suppression to low and moderate light levels was assessed in 38 pre- to mid-pubertal (9.1-14.7 years) and 29 late to postpubertal (11.5-15.9 years) adolescents. They received 1 hour of four light levels on consecutive nights: approximately 0.1 (near-dark baseline condition), 15, 150, and 500 lux. One group received evening light beginning at 11:00 pm (n = 39); a second group received morning light beginning at 3:00 am (n = 28). Salivary melatonin was sampled every 30 minutes. Melatonin suppression for 15, 150, and 500 lux was calculated relative to unsuppressed baseline levels in the 0.1 lux setting, within individuals. RESULTS The pre- to mid-pubertal group showed significantly greater melatonin suppression to 15 lux (9.2 ± 20.5%), 150 lux (26.0 ± 17.7%), and 500 lux (36.9 ± 11.4%) during evening light exposure compared to the late to postpubertal group (-5.3 ± 17.7%, 12.5 ± 17.3%, and 23.9 ± 21.7%, respectively; P < .05). No significant differences were seen between developmental groups in morning melatonin suppression. CONCLUSION These results indicate support for a greater sensitivity to evening light in early pubertal children. The increased sensitivity to light in younger adolescents suggests that exposure to evening light could be particularly disruptive to sleep regulation for this group.


Neuroscience Letters | 1999

In rats, odor-induced Fos in the olfactory pathways depends on the phase of the circadian clock

Shimon Amir; Sean W. Cain; Jonathan Sullivan; Barry Robinson; Jane Stewart

We used immunostaining for Fos to study the effect of circadian clock phase on odor-induced neuronal activation in the olfactory system in rats. Brief presentation of cedar odor to rats housed in constant darkness stimulated Fos expression in the main olfactory bulb, anterior olfactory nucleus, piriform cortex, and several other odor-responsive structures, both in the subjective day and subjective night phases of the cycle. Fos expression in response to odor, but not basal expression, was greatly enhanced in the subjective night in all structures examined. These findings are consistent with the idea that odor-induced neuronal activation in the olfactory pathways is modulated by the phase of the circadian clock.


Annals of Neurology | 2012

A common polymorphism near PER1 and the timing of human behavioral rhythms

Andrew S. Lim; Anne-Marie Chang; Joshua M. Shulman; Towfique Raj; Lori B. Chibnik; Sean W. Cain; Katherine Rothamel; Christophe Benoist; Amanda J. Myers; Charles A. Czeisler; Aron S. Buchman; David A. Bennett; Jeanne F. Duffy; Clifford B. Saper; Philip L. De Jager

Circadian rhythms influence the timing of behavior, neurological diseases, and even death. Rare mutations in homologs of evolutionarily conserved clock genes are found in select pedigrees with extreme sleep timing, and there is suggestive evidence that certain common polymorphisms may be associated with self‐reported day/night preference. However, no common polymorphism has been associated with the timing of directly observed human behavioral rhythms or other physiological markers of circadian timing at the population level.

Collaboration


Dive into the Sean W. Cain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne F. Duffy

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne-Marie Chang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven W. Lockley

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Orfeu M. Buxton

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge