Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean W. J. Prosser is active.

Publication


Featured researches published by Sean W. J. Prosser.


PLOS ONE | 2013

A DNA ‘Barcode Blitz’: Rapid Digitization and Sequencing of a Natural History Collection

Paul D. N. Hebert; Jeremy R. deWaard; Evgeny V. Zakharov; Sean W. J. Prosser; Jayme E. Sones; Jaclyn T.A. McKeown; Beth Mantle

DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity – insects.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Complementary molecular information changes our perception of food web structure

Helena Wirta; Paul D. N. Hebert; Riikka Kaartinen; Sean W. J. Prosser; Gergely Várkonyi; Tomas Roslin

Significance Understanding the interaction structure of ecological assemblages is the basis for understanding how they vary in space and time. To reconstruct interactions in the High Arctic, we draw on three sources of information: two based on DNA sequence data and one on the rearing of parasitoids from their hosts. Overall, we show that a combination of all three techniques will not only provide high resolution for describing feeding associations among individual species, but also revamp our view of the overall structure of the target network. Thus, our findings suggest that combining several types of information will fundamentally change our impression of both how local interaction webs are structured, and how biotic interactions are patterned across the globe. How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them.


Molecular Ecology Resources | 2013

Advancing nematode barcoding: A primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes

Sean W. J. Prosser; María G. Velarde-Aguilar; Virginia León-Règagnon; Paul D. N. Hebert

Although nematodes are one of the most diverse metazoan phyla, species identification through morphology is difficult. Several genetic markers have been used for their identification, but most do not provide species‐level resolution in all groups, and those that do lack primer sets effective across the phylum, precluding high‐throughput processing. This study describes a cocktail of three novel primer pairs that overcome this limitation by recovering cytochrome c oxidase I (COI) barcodes from diverse nematode lineages parasitic on vertebrates, including members of three orders and eight families. Its effectiveness across a broad range of nematodes enables high‐throughput processing.


Methods of Molecular Biology | 2010

DNA Barcoding of Marine Metazoans.

Dirk Steinke; Sean W. J. Prosser; Paul D. N. Hebert

The accumulation of DNA barcode sequences will provide an increasingly useful and comprehensive library for species identification and discovery of marine metazoans. Here we present a summary of protocols designed to obtain DNA barcodes of marine metazoans from diverse phyla.


Molecular Ecology Resources | 2015

One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire

Marko Mutanen; Mari Kekkonen; Sean W. J. Prosser; Paul D. N. Hebert; Lauri Kaila

Each holotype specimen provides the only objective link to a particular Linnean binomen. Sequence information from them is increasingly valuable due to the growing usage of DNA barcodes in taxonomy. As type specimens are often old, it may only be possible to recover fragmentary sequence information from them. We tested the efficacy of short sequences from type specimens in the resolution of a challenging taxonomic puzzle: the Elachista dispunctella complex which includes 64 described species with minuscule morphological differences. We applied a multistep procedure to resolve the taxonomy of this species complex. First, we sequenced a large number of newly collected specimens and as many holotypes as possible. Second, we used all >400 bp examine species boundaries. We employed three unsupervised methods (BIN, ABGD, GMYC) with specified criteria on how to handle discordant results and examined diagnostic bases from each delineated putative species (operational taxonomic units, OTUs). Third, we evaluated the morphological characters of each OTU. Finally, we associated short barcodes from types with the delineated OTUs. In this step, we employed various supervised methods, including distance‐based, tree‐based and character‐based. We recovered 658 bp barcode sequences from 194 of 215 fresh specimens and recovered an average of 141 bp from 33 of 42 holotypes. We observed strong congruence among all methods and good correspondence with morphology. We demonstrate potential pitfalls with tree‐, distance‐ and character‐based approaches when associating sequences of varied length. Our results suggest that sequences as short as 56 bp can often provide valuable taxonomic information. The results support significant taxonomic oversplitting of species in the Elachista dispunctella complex.


Food Chemistry | 2017

Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding

Sean W. J. Prosser; Paul D. N. Hebert

Honey is generated by various bee species from diverse plants, and because the value of different types of honey varies more than 100-fold, it is a target for fraud. This paper describes a protocol that employs DNA metabarcoding of three gene regions (ITS2, rbcLa, and COI) to provide an inexpensive tool to simultaneously deliver information on the botanical and entomological origins of honey. This method was used to examine seven varieties of honey: light, medium, dark, blended, pasteurized, creamed, and meliponine. Plant and insect sources were identified in five samples, but only the botanical or insect source could be identified in the other two. Two samples were found to be misrepresented. Although this method was generally successful in determining both plant and insect sources, honeys rich in polyphenolic compounds or subject to crystallization were recalcitrant to analysis, so further research is required to combat honey adulteration and mislabeling.


Molecular Ecology Resources | 2016

DNA barcodes from century-old type specimens using next-generation sequencing

Sean W. J. Prosser; Jeremy R. deWaard; Scott E. Miller; Paul D. N. Hebert

Type specimens have high scientific importance because they provide the only certain connection between the application of a Linnean name and a physical specimen. Many other individuals may have been identified as a particular species, but their linkage to the taxon concept is inferential. Because type specimens are often more than a century old and have experienced conditions unfavourable for DNA preservation, success in sequence recovery has been uncertain. This study addresses this challenge by employing next‐generation sequencing (NGS) to recover sequences for the barcode region of the cytochrome c oxidase 1 gene from small amounts of template DNA. DNA quality was first screened in more than 1800 century‐old type specimens of Lepidoptera by attempting to recover 164‐bp and 94‐bp reads via Sanger sequencing. This analysis permitted the assignment of each specimen to one of three DNA quality categories – high (164‐bp sequence), medium (94‐bp sequence) or low (no sequence). Ten specimens from each category were subsequently analysed via a PCR‐based NGS protocol requiring very little template DNA. It recovered sequence information from all specimens with average read lengths ranging from 458 bp to 610 bp for the three DNA categories. By sequencing ten specimens in each NGS run, costs were similar to Sanger analysis. Future increases in the number of specimens processed in each run promise substantial reductions in cost, making it possible to anticipate a future where barcode sequences are available from most type specimens.


Molecular Ecology Resources | 2014

Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths

Luis Miguel Hernández-Triana; Sean W. J. Prosser; M. A. Rodríguez-Perez; L. G. Chaverri; Paul D. N. Hebert; T. Ryan Gregory

In this study, we evaluated the efficacy of various primers for the purpose of DNA barcoding old, pinned museum specimens of blackflies (Diptera: Simuliidae). We analysed 271 pinned specimens representing two genera and at least 36 species. Due to the age of our material, we targeted overlapping DNA fragments ranging in size from 94 to 407 bp. We were able to recover valid sequences from 215 specimens, of which 18% had 500‐ to 658‐bp barcodes, 36% had 201‐ to 499‐bp barcodes and 46% had 65‐ to 200‐bp barcodes. Our study demonstrates the importance of choosing suitable primers when dealing with older specimens and shows that even very short sequences can be diagnostically informative provided that an appropriate gene region is used. Our study also highlights the lack of knowledge surrounding blackfly taxonomy, and we briefly discuss the need for further phylogenetic studies in this socioeconomically important family of insects.


Molecular Ecology Resources | 2013

A new set of primers for COI amplification from freshwater microcrustaceans

Sean W. J. Prosser; Arely Martínez-Arce; Manuel Elías-Gutiérrez

Despite the contribution of DNA barcoding towards understanding the biodiversity and distribution of species, the success of COI amplification has been quite variable when it comes to freshwater zooplankton (Elías‐Gutiérrez & Valdez‐Moreno 2008; Jeffery et al. 2011). Some genera of microcrustaceans seem to be more difficult to amplify than others. For example, Macrothrix, Scapholeberis, Diaphanosoma and cyclopoids have yielded limited results. Among several possible reasons for the inability to barcode freshwater microcrustaceans is that there does not exist a specific set of primers for COI amplification. To this end, we developed a zooplankton – specific set of primers, which significantly increased average amplification success (20% increase). With these primers, we observed an overall success of over 70% for Sididae and Chydoridae, and more than 80% for Daphniidae, Moinidae, Bosminidae, Macrothricidae, Ilyocryptidae and Diaptomidae. We also demonstrate a simple alteration to a common specimen fixation method that increases the overall recovery of barcodes from freshwater zooplankton. Collectively, we believe our results will greatly aid the recovery of barcodes from these difficult groups.


Virus Research | 2008

Subcellular localization of the triple gene block proteins encoded by a foveavirus infecting grapevines

Ana Rita Rebelo; Stella Niewiadomski; Sean W. J. Prosser; Peter J. Krell; Baozhong Meng

Grapevine rupestris stem pitting-associated virus (GRSPaV; Foveavirus; Flexiviridae) contains a positive-sense, ssRNA genome. GRSPaV occurs worldwide in grapes and is involved in the Rugose Wood disease complex. The GRSPaV genome contains the triple gene block (TGB), a genetic module present in several genera of plant RNA viruses. TGB encodes three proteins (TGBp1, TGBp2 and TGBp3) that are believed to work together to achieve intra- and inter-cellular transport of virions in infected plants. To reveal the subcellular localization of each TGB protein and to examine the impact that different fusion positions may have on the behavior of the native protein, we made a series of expression constructs and expressed the corresponding protein fusions in Nicotiana tabacum BY-2 cells and protoplasts. We demonstrated that TGBp1 had both a cytosolic and nuclear distribution. Two TGBp1 fusions (GFP fused at the N- or C-terminus) differ in subcellular distribution. Through the use of truncation mutants, we mapped TGBp1 regions responsible for the formation of two distinct types of aggregates. Sequence analyses predicted two and one transmembrane domains in TGBp2 and TGBp3, respectively. GFP fusions at either terminus of TGBp2 revealed identical localization to the ER network and ER-derived structures. In contrast, the two TGBp3 fusions to mRFP differed in localization. This is the first report on the subcellular localization of the viral proteins of a member of the Foveavirus genus.

Collaboration


Dive into the Sean W. J. Prosser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Miller

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge