Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean W. Limesand is active.

Publication


Featured researches published by Sean W. Limesand.


The Journal of Physiology | 2005

Investigating the causes of low birth weight in contrasting ovine paradigms

Jacqueline M. Wallace; Timothy R.H. Regnault; Sean W. Limesand; William W. Hay; Russell V. Anthony

Intrauterine growth restriction (IUGR) still accounts for a large incidence of infant mortality and morbity worldwide. Many of the circulatory and transport properties of the sheep placenta are similar to those of the human placenta and as such, the pregnant sheep offers an excellent model in which to study the development of IUGR. Two natural models of ovine IUGR are those of hyperthermic exposure during pregnancy, and adolescent overfeeding, also during pregnancy. Both models yield significantly reduced placental weights and an asymmetrically growth‐restricted fetus, and display altered maternal hormone concentrations, indicative of an impaired trophoblast capacity. Additionally, impaired placental angiogenesis and uteroplacental blood flow appears to be an early defect in both the hyperthermic and adolescent paradigms. The effects of these alterations in placental functional development appear to be irreversible. IUGR fetuses are both hypoxic and hypoglycaemic, and have reduced insulin and insulin‐like growth factor‐1 (IGF‐1), and elevated concentrations of lactate. However, fetal utilization of oxygen and glucose, on a weight basis, remain constant compared with control pregnancies. Maintained utilization of these substrates, in a substrate‐deficient environment, suggests increased sensitivities to metabolic signals, which may play a role in the development of metabolic diseases in later adult life.


Journal of Endocrinology | 2010

Consequences of a compromised intrauterine environment on islet function

Alice S. Green; Paul J. Rozance; Sean W. Limesand

Low birth weight is an important risk factor for impaired glucose tolerance and diabetes later in life. One hypothesis is that fetal beta-cells inherit a persistent defect as a developmental response to fetal malnutrition, a primary cause of intrauterine growth restriction (IUGR). Our understanding of fetal programing events in the human endocrine pancreas is limited, but several animal models of IUGR extend our knowledge of developmental programing in beta-cells. Pathological outcomes such as beta-cell dysfunction, impaired glucose tolerance, and diabetes are often observed in adult offspring from these animal models, similar to the associations of low birth weight and metabolic diseases in humans. However, the identified mechanisms underlying beta-cell dysfunction across models and species are varied, likely resulting from the different methodologies used to induce experimental IUGR, as well as from intraspecies differences in pancreas development. In this review, we first present the evidence for human beta-cell dysfunction being associated with low birth weight or IUGR. We then evaluate relevant animal models of IUGR, focusing on the strengths of each, in order to define critical periods and types of nutrient deficiencies that can lead to impaired beta-cell function. These findings frame our current knowledge of beta-cell developmental programing and highlight future research directions to clarify the mechanisms of beta-cell dysfunction for human IUGR.


Journal of Endocrinology | 2009

One process for pancreatic β-cell coalescence into islets involves an epithelial–mesenchymal transition

Lori Cole; Miranda J. Anderson; Parker B. Antin; Sean W. Limesand

Islet replacement is a promising therapy for treating diabetes mellitus, but the supply of donor tissue for transplantation is limited. To overcome this limitation, endocrine tissue can be expanded, but this requires an understanding of normal developmental processes that regulate islet formation. In this study, we compare pancreas development in sheep and human, and provide evidence that an epithelial-mesenchymal transition (EMT) is involved in beta-cell differentiation and islet formation. Transcription factors know to regulate pancreas formation, pancreatic duodenal homeobox factor 1, neurogenin 3, NKX2-2, and NKX6-1, which were expressed in the appropriate spatial and temporal pattern to coordinate pancreatic bud outgrowth and direct endocrine cell specification in sheep. Immunofluorescence staining of the developing pancreas was used to co-localize insulin and epithelial proteins (cytokeratin, E-cadherin, and beta-catenin) or insulin and a mesenchymal protein (vimentin). In sheep, individual beta-cells become insulin-positive in the progenitor epithelium, then lose epithelial characteristics, and migrate out of the epithelial layer to form islets. As beta-cells exit the epithelial progenitor cell layer, they acquire mesenchymal characteristics, shown by their acquisition of vimentin. In situ hybridization expression analysis of the SNAIL family members of transcriptional repressors (SNAIL1, -2, and -3; listed as SNAI1, -2, -3 in the HUGO Database) showed that each of the SNAIL genes was expressed in the ductal epithelium during development, and SNAIL-1 and -2 were co-expressed with insulin. Our findings provide strong evidence that the movement of beta-cells from the pancreatic ductal epithelium involves an EMT.


American Journal of Physiology-endocrinology and Metabolism | 2010

Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction

Rafael Leos; Miranda J. Anderson; Xiaochuan Chen; Juliana Pugmire; K. Arbor Anderson; Sean W. Limesand

In this study, we examined chronic norepinephrine suppression of insulin secretion in sheep fetuses with placental insufficiency-induced intrauterine growth restriction (IUGR). Glucose-stimulated insulin secretion (GSIS) was measured with a square-wave hyperglycemic clamp in the presence or absence of adrenergic receptor antagonists phentolamine (alpha) and propranolol (beta). IUGR fetuses were hypoglycemic and hypoxemic and had lower GSIS responsiveness (P < or = 0.05) than control fetuses. IUGR fetuses also had elevated plasma norepinephrine (3,264 +/- 614 vs. 570 +/- 86 pg/ml; P < or = 0.05) and epinephrine (164 +/- 32 vs. 60 +/- 12 pg/ml; P < or = 0.05) concentrations. In control fetuses, adrenergic inhibition increased baseline plasma insulin concentrations (1.7-fold, P < or = 0.05), whereas during hyperglycemia insulin was not different. A greater (P < or = 0.05) response to adrenergic inhibition was found in IUGR fetuses, and the average plasma insulin concentrations increased 4.9-fold at baseline and 7.1-fold with hyperglycemia. Unlike controls, basal plasma glucose concentrations fell (P < or = 0.05) with adrenergic antagonists. GSIS responsiveness, measured by the change in insulin, was higher (8.9-fold, P < or = 0.05) in IUGR fetuses with adrenergic inhibition than controls (1.8-fold, not significant), showing that norepinephrine suppresses insulin secretion in IUGR fetuses. Strikingly, in IUGR fetuses, adrenergic inhibition resulted in a greater GSIS responsiveness, because beta-cell mass was 56% lower and the maximal stimulatory insulin response tended (P < 0.1) to be higher than controls. This persistent norepinephrine suppression appears to be partially explained by higher mRNA concentrations of adrenergic receptors alpha(1D), alpha(2A), and alpha(2B) in a cohort of fetuses that were naïve to the antagonists. Therefore, norepinephrine suppression of insulin secretion was maintained, in part, by upregulating adrenergic receptor expression, but the beta-cells also appeared to compensate with enhanced GSIS. These findings may begin to explain why IUGR infants have a propensity for increased glucose requirements if norepinephrine is suddenly decreased after birth.


The Journal of Physiology | 2003

Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction

Sean W. Limesand; William W. Hay

Fetal pancreatic adaptations to relative hypoglycaemia, a characteristic of intra‐uterine growth restriction, may limit pancreatic β‐cell capacity to produce and/or secrete insulin. The objective of this study was to measure β‐cell responsiveness in hypoglycaemic (H) fetal sheep and ascertain whether a 5 day euglycaemic recovery period would restore insulin secretion capacity. Glucose‐stimulated insulin secretion (GSIS) was measured in euglycaemic (E) control fetuses, fetuses made hypoglycaemic for 14 days, and in a subset of 14‐day hypoglycaemic fetuses returned to euglycaemia for 5 days (R fetuses). Hypoglycaemia significantly decreased plasma insulin concentrations in H (0.13 ± 0.01 ng ml−1) and R fetuses (0.11 ± 0.01 ng ml−1); insulin concentrations returned to euglycaemic control values (0.30 ± 0.01 ng ml−1) in R fetuses (0.29 ± 0.04 ng ml−1) during their euglycaemic recovery period. Mean steady‐state plasma insulin concentration during the GSIS study was reduced in H fetuses (0.40 ± 0.07 vs. 0.92 ± 0.10 ng ml−1 in E), but increased (P < 0.05) in R fetuses (0.73 ± 0.10 ng ml−1) to concentrations not different from those in the E group. Nonlinear modelling of GSIS showed that response time was greater (P < 0.01) in both H (15.6 ± 2.8 min) and R (15.4 ± 1.5 min) than in E fetuses (6.3 ± 1.1 min). In addition, insulin secretion responsiveness to arginine was reduced by hypoglycaemia (0.98 ± 0.11 ng ml−1 in H vs. 1.82 ± 0.17 ng ml−1 in E, P < 0.05) and did not recover (1.21 ± 0.15 ng ml−1 in R, P < 0.05vs. E). Thus, a 5 day euglycaemic recovery period from chronic hypoglycaemia reestablished GSIS to normal levels, but there was a persistent reduction of β‐cell responsiveness to glucose and arginine. We conclude that programming of pancreatic insulin secretion responsiveness can occur in response to fetal glucose deprivation, indicating a possible mechanism for establishing, in fetal life, a predisposition to type 2 diabetes.


Tissue Engineering Part A | 2008

An Islet-Stabilizing Implant Constructed Using a Preformed Vasculature

Alton M. Hiscox; Alice L. Stone; Sean W. Limesand; James B. Hoying; Stuart K. Williams

Islet transplantation for the purpose of treating insulin-sensitive diabetes is currently limited by several factors, including islet survival posttransplantation. In the current study, a tissue-engineered prevascularized pancreatic encapsulating device (PPED) was developed. Isolated islets were placed in collagen gels, and they exhibited fourfold more insulin release than islets not in collagen. The insulin released by beta-cells in islets encapsulated in collagen exhibited unobstructed diffusion within the collagen gels. Subsequent studies evaluated the ability to create a sandwich comprised of two layers of prevascularized collagen gels around a central collagen gel containing islets. In vitro characterization of the islets showed that islets are functional and responded to glucose stimulation. The PPEDs were implanted subcutaneously into severe combined immunodeficient mice. Islet survival was assessed after 7, 14, and 28 days. Immunohistochemical analysis was performed on the implants to detect insulin and the presence of intraislet endothelial cells. At all time points, insulin was localized in association with intact and partially dissociated islets. Moreover, cells that exhibited insulin staining were colocalized with intraislet endothelial cells. These data indicate that the PPED enhances islet survival by supporting islet viability and maintaining intraislet endothelial cell structures.


Journal of Endocrinology | 2009

The bovine mammary gland expresses multiple functional isoforms of serotonin receptors

Laura L. Hernandez; Sean W. Limesand; J.L. Collier; Nelson D. Horseman; R. J. Collier

Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors. The mRNAs for five receptor isoforms (HTR1B, 2A, 2B, 4, and 7) were identified by conventional real-time (RT)-PCR, RT quantitative PCR, and in situ hybridization in BMT. In addition to luminal mammary epithelial cell expression, HTR4 was expressed in myoepithelium, and HTR1B, 2A, and 2B were expressed in small mammary blood vessels. Serotonin suppressed milk protein mRNA expression (α-lactalbumin and β-casein mRNA) in lactogen-treated primary bovine mammary epithelial cell (BMEC) cultures. To probe the functional activities of individual receptors, caspase-3 activity and expression of α-lactalbumin and β-casein were measured. Both SB22489 (1B antagonist) and ritanserin (2A antagonist) increased caspase-3 activity. Expression of α-lactalbumin and β-casein mRNA levels in BMEC were stimulated by low concentrations of SB224289, ritanserin, or pimozide. These results demonstrate that there are multiple 5-HT receptor isoforms in the bovine mammary gland, and point to profound differences between serotonergic systems of the bovine mammary gland and the human and mouse mammary glands. Whereas human and mouse mammary epithelial cells express predominately the protein for the 5-HT7 receptor, cow mammary epithelium expresses multiple receptors that have overlapping, but not identical, functional activities.


American Journal of Physiology-endocrinology and Metabolism | 2013

Reductions in insulin concentrations and β-cell mass precede growth restriction in sheep fetuses with placental insufficiency

Sean W. Limesand; Paul J. Rozance; Antoni R. Macko; Miranda J. Anderson; Amy C. Kelly; William W. Hay

In pregnancy complicated by placental insufficiency (PI) and intrauterine growth restriction (IUGR), the fetus near term has reduced basal and glucose-stimulated insulin concentrations and reduced β-cell mass. To determine whether suppression of insulin concentrations and β-cell mass precedes reductions in fetal weight, which would implicate insulin deficiency as a cause of subsequent IUGR, we measured basal and glucose-stimulated insulin concentrations and pancreatic histology at 0.7 gestation in PI fetuses. Placental weights in the PI pregnancies were 40% lower than controls (265 ± 26 vs. 442 ± 41 g, P < 0.05), but fetal weights were not different. At basal conditions blood oxygen content, plasma glucose concentrations, and plasma insulin concentrations were lower in PI fetuses compared with controls (2.5 ± 0.3 vs. 3.5 ± 0.3 mmol/l oxygen, P < 0.05; 1.11 ± 0.09 vs. 1.44 ± 0.12 mmol/l glucose; 0.12 ± 0.01 vs. 0.27 ± 0.02 ng/ml insulin; P < 0.05). During a steady-state hyperglycemic clamp (~2.5 ± 0.1 mmol/l), glucose-stimulated insulin concentrations were lower in PI fetuses than controls (0.28 ± 0.02 vs. 0.55 ± 0.04 ng/ml; P < 0.01). Plasma norepinephrine concentrations were 3.3-fold higher (P < 0.05) in PI fetuses (635 ± 104 vs. 191 ± 91 pg/ml). Histological examination revealed less insulin area and lower β-cell mass and rates of mitosis. The pancreatic parenchyma was also less dense (P < 0.01) in PI fetuses, but no differences were found for pancreatic progenitor cells or other endocrine cell types. These findings show that hypoglycemia, hypoxemia, and hypercatecholaminemia are present and potentially contribute to lower insulin concentrations and β-cell mass due to slower proliferation rates in early third-trimester PI fetuses before discernible reductions in fetal weight.


Pediatric Research | 2009

Glucose replacement to euglycemia causes hypoxia, acidosis, and decreased insulin secretion in fetal sheep with intrauterine growth restriction

Paul J. Rozance; Sean W. Limesand; James S. Barry; Laura D. Brown; William W. Hay

Nutritional interventions for intrauterine growth restriction (IUGR) have raised concerns for fetal toxicity, the mechanisms of which are unknown. Most of these attempts did not aim to normalize fetal metabolic conditions. Therefore, we used a model of IUGR to determine whether normalization of fetal hypoglycemia for 2 wks would be tolerated and increase insulin concentrations and pancreatic β-cell mass. IUGR fetuses received either a direct saline infusion (Sal, the control group) or a 30% dextrose infusion (Glu) to normalize glucose concentrations. Neither insulin concentrations (0.11 ± 0.01 Glu vs. 0.10 ± 0.01 ng/mL Sal) nor β-cell mass (65.2 ± 10.3 Glu vs. 74.7 ± 18.4 mg Sal) changed. Glucose stimulated insulin secretion (GSIS) was lower in the Glu group. Glu fetuses became progressively more hypoxic: O2 content 1.4 ± 0.5 Glu vs. 2.7 ± 0.4 mM Sal, p < 0.05. Partial pressure of carbon dioxide (Paco2) (53.6 ± 0.8 Glu vs. 51.6 ± 0.8 Sal, p < 0.05) and lactate (7.74 ± 3.82 Glu vs. 2.47 ± 0.55 mM Sal, p < 0.0001) were greater and pH lower (7.275 ± 0.071 Glu vs. 7.354 ± 0.003 Sal, p < 0.01) in the Glu group. We conclude that correction of fetal hypoglycemia is not well tolerated and fails to increase insulin concentrations or β-cell mass in IUGR fetuses.


Journal of Pregnancy | 2012

Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism.

D. T. Yates; Antoni R. Macko; M. Nearing; Xiaochuan Chen; Robert P. Rhoads; Sean W. Limesand

Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

Collaboration


Dive into the Sean W. Limesand's collaboration.

Top Co-Authors

Avatar

William W. Hay

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Rozance

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. T. Yates

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge