Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebahattin Cirak is active.

Publication


Featured researches published by Sebahattin Cirak.


The Lancet | 2011

Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study

Sebahattin Cirak; Virginia Arechavala-Gomeza; M. Guglieri; L. Feng; Silvia Torelli; Karen Anthony; Stephen Abbs; Maria Elena Garralda; John P. Bourke; Dominic J. Wells; George Dickson; Matthew J.A. Wood; S.D. Wilton; Volker Straub; Ryszard Kole; Stephen B. Shrewsbury; C. Sewry; Jennifer E. Morgan; Kate Bushby; Francesco Muntoni

Summary Background We report clinical safety and biochemical efficacy from a dose-ranging study of intravenously administered AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy. Method We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5–15 years with amenable deletions in DMD. Participants had a muscle biopsy before starting treatment and after 12 weekly intravenous infusions of AVI-4658. The primary study objective was to assess safety and tolerability of AVI-4658. The secondary objectives were pharmacokinetic properties and the ability of AVI-4658 to induce exon 51 skipping and dystrophin restoration by RT-PCR, immunohistochemistry, and immunoblotting. The study is registered, number NCT00844597. Findings 19 patients took part in the study. AVI-4658 was well tolerated with no drug-related serious adverse events. AVI-4658 induced exon 51 skipping in all cohorts and new dystrophin protein expression in a significant dose-dependent (p=0·0203), but variable, manner in boys from cohort 3 (dose 2 mg/kg) onwards. Seven patients responded to treatment, in whom mean dystrophin fluorescence intensity increased from 8·9% (95% CI 7·1–10·6) to 16·4% (10·8–22·0) of normal control after treatment (p=0·0287). The three patients with the greatest responses to treatment had 21%, 15%, and 55% dystrophin-positive fibres after treatment and these findings were confirmed with western blot, which showed an increase after treatment of protein levels from 2% to 18%, from 0·9% to 17%, and from 0% to 7·7% of normal muscle, respectively. The dystrophin-associated proteins α-sarcoglycan and neuronal nitric oxide synthase were also restored at the sarcolemma. Analysis of the inflammatory infiltrate indicated a reduction of cytotoxic T cells in the post-treatment muscle biopsies in the two high-dose cohorts. Interpretation The safety and biochemical efficacy that we present show the potential of AVI-4658 to become a disease-modifying drug for Duchenne muscular dystrophy. Funding UK Medical Research Council; AVI BioPharma.


Lancet Neurology | 2009

Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study

Maria Kinali; Virginia Arechavala-Gomeza; L. Feng; Sebahattin Cirak; David Hunt; Carl F. Adkin; M. Guglieri; Emma J. Ashton; Stephen Abbs; Petros Nihoyannopoulos; Maria Elena Garralda; Mary A. Rutherford; Caroline McCulley; Linda Popplewell; Ian R. Graham; George Dickson; Matthew J.A. Wood; Dominic J. Wells; S.D. Wilton; Ryszard Kole; Volker Straub; Kate Bushby; C. Sewry; Jennifer E. Morgan; Francesco Muntoni

Summary Background Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefit patients with this disorder. Methods We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, to assess the safety and biochemical efficacy of an intramuscular morpholino splice-switching oligonucleotide (AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fibroblasts from a skin biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the secondary endpoint was its biochemical efficacy. This trial is registered, number NCT00159250. Findings Two patients received 0·09 mg AVI-4658 in 900 μL (0·9%) saline and five patients received 0·9 mg AVI-4658 in 900 μL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained sections that were adjacent to the needle track through which AVI-4658 was given, 44–79% of myofibres had increased expression of dystrophin. In randomly chosen sections of treated EDB muscles, the mean intensity of dystrophin staining ranged from 22% to 32% of the mean intensity of dystrophin in healthy control muscles (mean 26·4%), and the mean intensity was 17% (range 11–21%) greater than the intensity in the contralateral saline-treated muscle (one-sample paired t test p=0·002). In the dystrophin-positive fibres, the intensity of dystrophin staining was up to 42% of that in healthy muscle. We showed expression of dystrophin at the expected molecular weight in the AVI-4658-treated muscle by immunoblot. Interpretation Intramuscular AVI-4658 was safe and induced the expression of dystrophin locally within treated muscles. This proof-of-concept study has led to an ongoing systemic clinical trial of AVI-4658 in patients with DMD. Funding UK Department of Health.


Nature Genetics | 2012

ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome

Tobias Willer; Hane Lee; Mark Lommel; Takako Yoshida-Moriguchi; Daniel Beltrán-Valero de Bernabé; David Venzke; Sebahattin Cirak; Harry Schachter; Jiri Vajsar; Thomas Voit; Francesco Muntoni; Andrea S Loder; William B. Dobyns; Thomas L. Winder; Sabine Strahl; Katherine D. Mathews; Stanley F. Nelson; Steven A. Moore; Kevin P. Campbell

Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy that is accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of diseases associated with abnormal post-translational processing of α-dystroglycan that share a defect in laminin-binding glycan synthesis. Although mutations in six genes have been identified as causes of WWS, only half of all individuals with the disease can currently be diagnosed on this basis. A cell fusion complementation assay in fibroblasts from undiagnosed individuals with WWS was used to identify five new complementation groups. Further evaluation of one group by linkage analysis and targeted sequencing identified recessive mutations in the ISPD gene (encoding isoprenoid synthase domain containing). The pathogenicity of the identified ISPD mutations was shown by complementation of fibroblasts with wild-type ISPD. Finally, we show that recessive mutations in ISPD abolish the initial step in laminin-binding glycan synthesis by disrupting dystroglycan O-mannosylation. This establishes a new mechanism for WWS pathophysiology.


American Journal of Human Genetics | 2008

A Homozygous Mutation in Human PRICKLE1 Causes an Autosomal-Recessive Progressive Myoclonus Epilepsy-Ataxia Syndrome

Alexander G. Bassuk; Robyn H. Wallace; Aimee Buhr; Andrew R. Buller; Zaid Afawi; Masahito Shimojo; Shingo Miyata; Shan Chen; Pedro Gonzalez-Alegre; Hilary Griesbach; Shu Wu; Marcus Nashelsky; Eszter K. Vladar; Dragana Antic; Polly J. Ferguson; Sebahattin Cirak; Thomas Voit; Matthew P. Scott; Jeffrey D. Axelrod; Christina A. Gurnett; Azhar S. Daoud; Sara Kivity; Miriam Y. Neufeld; Aziz Mazarib; Rachel Straussberg; Simri Walid; Amos D. Korczyn; Diane C. Slusarski; Samuel F. Berkovic; Hatem I. El-Shanti

Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.


American Journal of Human Genetics | 2013

Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

Keren J. Carss; Elizabeth Stevens; A. Reghan Foley; Sebahattin Cirak; Moniek Riemersma; Silvia Torelli; Alexander Hoischen; Tobias Willer; Monique van Scherpenzeel; Steven A. Moore; Sonia Messina; Enrico Bertini; Carsten G. Bönnemann; Jose E. Abdenur; Carla Grosmann; Akanchha Kesari; R. Quinlivan; Leigh B. Waddell; Helen Young; Elizabeth Wraige; Shu Yau; Lina Brodd; L. Feng; C. Sewry; Daniel G. MacArthur; Kathryn N. North; Eric P. Hoffman; Derek L. Stemple; Hans van Bokhoven; Kevin P. Campbell

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


American Journal of Human Genetics | 2013

Mutations in B3GALNT2 Cause Congenital Muscular Dystrophy and Hypoglycosylation of α-Dystroglycan

Elizabeth Stevens; Keren J. Carss; Sebahattin Cirak; A. Reghan Foley; Silvia Torelli; Tobias Willer; Dimira E. Tambunan; Shu Yau; Lina Brodd; C. Sewry; L. Feng; Goknur Haliloglu; Diclehan Orhan; William B. Dobyns; Gregory M. Enns; Melanie A. Manning; Amanda Krause; Mustafa A. Salih; Christopher A. Walsh; Kevin P. Campbell; M. Chiara Manzini; Derek L. Stemple; Yung Yao Lin; Francesco Muntoni

Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.


American Journal of Human Genetics | 2012

Mutations in NSUN2 cause autosomal-recessive intellectual disability

Lia Abbasi-Moheb; Sara Mertel; Melanie Gonsior; Leyla Nouri-Vahid; Kimia Kahrizi; Sebahattin Cirak; Dagmar Wieczorek; M. Mahdi Motazacker; Sahar Esmaeeli-Nieh; Kirsten Cremer; Robert Weißmann; Andreas Tzschach; Masoud Garshasbi; Seyedeh Sedigheh Abedini; Hossein Najmabadi; Hans-Hilger Ropers; Stephan J. Sigrist; Andreas W. Kuss

With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227(∗)] and c.1114C>T [p.Gln372(∗)], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs(∗)192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development.


Neurology | 2011

Muscle histology vs MRI in Duchenne muscular dystrophy

Maria Kinali; Virginia Arechavala-Gomeza; Sebahattin Cirak; Alan Glover; M. Guglieri; L. Feng; Kieren G. Hollingsworth; David Hunt; Heinz Jungbluth; H. P. Roper; R. Quinlivan; J. A. Gosalakkal; S. Jayawant; A. Nadeau; L. Hughes-Carre; A. Manzur; Eugenio Mercuri; J. Morgan; Volker Straub; K. Bushby; C. Sewry; Mary A. Rutherford; F. Muntoni

Objective: There are currently no effective treatments to halt the muscle breakdown in Duchenne muscular dystrophy (DMD), although genetic-based clinical trials are being piloted. Most of these trials have as an endpoint the restoration of dystrophin in muscle fibers, hence requiring sufficiently well-preserved muscle of recruited patients. The choice of the muscles to be studied and the role of noninvasive methods to assess muscle preservation therefore require further evaluation. Methods: We studied the degree of muscle involvement in the lower leg muscles of 34 patients with DMD >8 years, using muscle MRI. In a subgroup of 15 patients we correlated the muscle MRI findings with the histology of open extensor digitorum brevis (EDB) muscle biopsies. Muscle MRI involvement was assigned using a scale 0–4 (normal–severe). Results: In all patients we documented a gradient of involvement of the lower leg muscles: the posterior compartment (gastrocnemius > soleus) was most severely affected; the anterior compartment (tibialis anterior/posterior, popliteus, extensor digitorum longus) least affected. Muscle MRI showed EDB involvement that correlated with the patients age (p = 0.055). We show a correlation between the MRI and EDB histopathologic changes, with MRI 3–4 grades associated with a more severe fibro-adipose tissue replacement. The EDB was sufficiently preserved for bulk and signal intensity in 18/22 wheelchair users aged 10–16.6 years. Conclusion: This study provides a detailed correlation between muscle histology and MRI changes in DMD and demonstrates the value of this imaging technique as a reliable tool for the selection of muscles in patients recruited into clinical trials.


Molecular Therapy | 2012

Restoration of the Dystrophin-associated Glycoprotein Complex After Exon Skipping Therapy in Duchenne Muscular Dystrophy

Sebahattin Cirak; L. Feng; Karen Anthony; Virginia Arechavala-Gomeza; Silvia Torelli; C. Sewry; Jennifer E. Morgan; Francesco Muntoni

We previously conducted a proof of principle; dose escalation study in Duchenne muscular dystrophy (DMD) patients using the morpholino splice-switching oligonucleotide AVI-4658 (eteplirsen) that induces skipping of dystrophin exon 51 in patients with relevant deletions, restores the open reading frame and induces dystrophin protein expression after intramuscular (i.m.) injection. We now show that this dystrophin expression was accompanied by an elevated expression of α-sarcoglycan, β-dystroglycan (BDG) and--in relevant cases--neuronal nitric oxide synthase (nNOS) at the sarcolemma, each of which is a component of a different subcomplex of the dystrophin-associated glycoprotein complex (DAPC). As expected, nNOS expression was relocalized to the sarcolemma in Duchenne patients in whom the dystrophin deletion left the nNOS-binding domain (exons 42-45) intact, whereas this did not occur in patients with deletions that involved this domain. Our results indicate that the novel internally deleted and shorter dystrophin induced by skipping exon 51 in patients with amenable deletions, can also restore the dystrophin-associated complex, further suggesting preserved functionality of the newly translated dystrophin.


American Journal of Human Genetics | 2012

Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss.

Matthias Baumann; Cecilia Giunta; Birgit Krabichler; Franz Rüschendorf; Nicoletta Zoppi; Marina Colombi; Reginald E. Bittner; Susana Quijano-Roy; Francesco Muntoni; Sebahattin Cirak; Gudrun Schreiber; Y. Zou; Ying Hu; Norma B. Romero; Robert Yves Carlier; Albert Amberger; Andrea J. Deutschmann; Volker Straub; Marianne Rohrbach; Beat Steinmann; Kevin Rostasy; Daniela Karall; Carsten G. Bönnemann; Johannes Zschocke; Christine Fauth

We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.

Collaboration


Dive into the Sebahattin Cirak's collaboration.

Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

C. Sewry

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

L. Feng

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Silvia Torelli

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Thomas Voit

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uluç Yiş

Dokuz Eylül University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Scoto

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge