Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastiaan F. W. Neggers is active.

Publication


Featured researches published by Sebastiaan F. W. Neggers.


Psychological Science | 2002

Visual Search Is Modulated by Action Intentions

Harold Bekkering; Sebastiaan F. W. Neggers

The influence of action intentions on visual selection processes was investigated in a visual search paradigm. A predefined target object with a certain orientation and color was presented among distractors, and subjects had to either look and point at the target or look at and grasp the target. Target selection processes prior to the first saccadic eye movement were modulated by the different action intentions. Specifically, fewer saccades to objects with the wrong orientation were made in the grasping condition than in the pointing condition, whereas the number of saccades to an object with the wrong color was the same in the two conditions. Saccadic latencies were similar under the different task conditions, so the results cannot be explained by a speed-accuracy trade-off. The results suggest that a specific action intention, such as grasping, can enhance visual processing of action-relevant features, such as orientation. Together, the findings support the view that visual attention can be best understood as a selection-for-action mechanism.


Brain | 2008

Auditory verbal hallucinations predominantly activate the right inferior frontal area.

Iris E. Sommer; Kelly M. J. Diederen; J. D. Blom; Anne Willems; Leila Kushan; Karin Slotema; Marco P. Boks; Kirstin Daalman; Hans W. Hoek; Sebastiaan F. W. Neggers; René S. Kahn

The pathophysiology of auditory verbal hallucinations (AVH) is largely unknown. Several functional imaging studies have measured cerebral activation during these hallucinations, but sample sizes were relatively small (one to eight subjects) and findings inconsistent. In this study cerebral activation was measured using fMRI in 24 psychotic patients while they experienced AVH in the scanner and, in another session, while they silently generated words. All patients were right handed and diagnosed with schizophrenia, schizo-affective disorder or psychotic disorder not otherwise specified. Group analysis for AVH revealed activation in the right homologue of Brocas area, bilateral insula, bilateral supramarginal gyri and right superior temporal gyrus. Brocas area and left superior temporal gyrus were not activated. Group analysis for word generation in these patients yielded activation in Brocas and Wernickes areas and to a lesser degree their right-sided homologues, bilateral insula and anterior cingulate gyri. Lateralization of activity during AVH was not correlated with language lateralization, but rather with the degree to which the content of the hallucinations had a negative emotional valence. The main difference between cerebral activity during AVH and activity during normal inner speech appears to be the lateralization. The predominant engagement of the right inferior frontal area during AVH may be related to the typical low semantic complexity and negative emotional content.


NeuroImage | 2006

Interactions between ego- and allocentric neuronal representations of space

Sebastiaan F. W. Neggers; R.H.J. van der Lubbe; Nick F. Ramsey; Albert Postma

In the primate brain, visual spatial representations express distances of objects with regard to different references. In the parietal cortex, distances are thought to be represented with respect to the body (egocentric representation) and in superior temporal cortices with respect to other objects, independent of the observer (allocentric representation). However, these representations of space are interdependent, complicating such distinctions. Specifically, an objects position within a background frame strongly biases egocentric position location judgments. This bias, however, is absent for pointing movements towards that same object. More recent theories state that dorsal parietal spatial representations subserve visuomotor processing, whereas temporal lobe representations subserve memory and cognition. Therefore, it may be hypothesized that parietal egocentric representations, responsible for movement control, are not influenced by irrelevant allocentric cues, whereas ventral representations are. In an event-related functional magnetic resonance imaging study, subjects judged target bar locations relative to their body (egocentric task) or a background bar (allocentric task). Activity in the superior parietal lobule (SPL) was shown to increase during egocentric judgments, but not during allocentric judgments. The superior temporal gyrus (STG) shows a negative BOLD response during allocentric judgments and no activation during egocentric judgments. During egocentric judgments, the irrelevant background influenced activity in the posterior commissure and the medial temporal gyrus. SPL activity was unaffected by the irrelevant background during egocentric judgments. Sensitivity to spatial perceptual biases is apparently limited to occipito-temporal areas, subserving the observed biased cognitive reports of location, and is not found in parietal areas, subserving unbiased goal-directed actions.


NMR in Biomedicine | 2008

Enhanced sensitivity with fast three‐dimensional blood‐oxygen‐level‐dependent functional MRI: comparison of SENSE–PRESTO and 2D‐EPI at 3 T

Sebastiaan F. W. Neggers; Erno J. Hermans; Nick F. Ramsey

A major impetus in functional MRI development is to enhance sensitivity to changes in neural activity. One way to improve sensitivity is to enhance contrast to noise ratio, for instance by increasing field strength or the number of receiving coils. If these parameters are fixed, there is still the possibility to optimize scans by altering speed or signal strength [signal‐to‐noise ratio (SNR)]. We here demonstrate a very fast whole‐brain scan, by combining a three‐dimensional (3D)‐PRESTO (principle of echo shifting with a train of observations) pulse sequence with a commercial eight‐channel head coil and sensitivity encoding (SENSE). 3D‐PRESTO uses time optimally by means of echo shifting. Moreover, 3D scans can accommodate SENSE in two directions, reducing scan time proportionally. The present PRESTO–SENSE sequence achieves full brain coverage within 500 ms. We compared this with a two‐dimensional (2D) echo planar imaging (EPI) scan with identical brain coverage on 10 volunteers. Resting‐state temporal SNR in the blood‐oxygen‐level‐dependent (BOLD) frequency range and T‐statistics for thumb movement and visual checkerboard activations were compared. Results show improved temporal SNR across the brain for PRESTO–SENSE compared with EPI. The percentage signal change and relative standard deviation of the noise were smaller for PRESTO–SENSE. Sensitivity for brain activation, as reflected by T‐values, was consistently higher for PRESTO, and this seemed to be mainly due to the increased number of observations within a fixed time period. We conclude that PRESTO accelerated with SENSE in two directions can be more sensitive to BOLD signal changes than the widely used 2D‐EPI, when a fixed amount of time is available for functional MRI scanning. Copyright


Human Brain Mapping | 2013

Expectations and violations: Delineating the neural network of proactive inhibitory control

Bram B. Zandbelt; Mirjam Bloemendaal; Sebastiaan F. W. Neggers; René S. Kahn; Matthijs Vink

The ability to stop a prepared response (reactive inhibition) appears to depend on the degree to which stopping is expected (proactive inhibition). Functional MRI studies have shown that activation during proactive and reactive inhibition overlaps, suggesting that the whole neural network for reactive inhibition becomes already activated in anticipation of stopping. However, these studies measured proactive inhibition as the effect of stop‐signal probability on activation during go trials. Therefore, activation could reflect expectation of a stop‐signal (evoked by the stop‐signal probability cue), but also violation of this expectation because stop‐signals do not occur on go trials. We addressed this problem, using a stop‐signal task in which the stop‐signal probability cue and the go‐signal were separated in time. Hence, we could separate activation during the cue, reflecting expectation of the stop‐signal, from activation during the go‐signal, reflecting expectation of the stop‐signal or violation of that expectation. During the cue, the striatum, the supplementary motor complex (SMC), and the midbrain activated. During the go‐signal, the right inferior parietal cortex (IPC) and the right inferior frontal cortex (IFC) activated. These findings suggest that the neural network previously associated with proactive inhibition can be subdivided into two components. One component, including the striatum, the SMC, and the midbrain, activated during the cue, implicating this network in proactive inhibition. Another component, consisting of the right IPC and the right IFC, activated during the go‐signal. Rather than being involved in proactive inhibition, this network appears to be involved in processes associated with violation of expectations. Hum Brain Mapp 34:2015–2024, 2013.


Brain Research | 2006

Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting

Robert Henricus Johannes van der Lubbe; Sebastiaan F. W. Neggers; Rolf Verleger; J. Leon Kenemans

Recent brain imaging studies provided evidence that the brain areas involved with attentional orienting and the preparation of saccades largely overlap, which may indicate that focusing attention at a specific location can be considered as an unexecuted saccade towards that location (i.e. the premotor theory of attention). Alternatively, it may be proposed that attentional orienting is simply relevant for preparing saccades, but the two processes may also be completely unrelated. In two experiments, we examined temporal activation of brain areas by measuring the electroencephalogram. Central cues indicated the likely side (left or right) at which a to-be-attended target would occur, or to which a saccade had to be prepared. Cue direction-related activity was determined, time-locked to cue onset. In addition, in our second experiment, delayed saccades had to be carried out, which allows to focus on processes strongly related to saccade execution. In nearly all tasks, an early directing attention negativity (EDAN), an anterior directing attention negativity (ADAN), and a late directing attention positivity (LDAP) were observed, time-locked to cue onset. Source analyses supported the view that this activity probably originates from areas within the ventral intraparietal sulcus (vIPS) and the frontal eye fields (FEF). The saccade-locked analysis also indicated that the FEF plays an important role in triggering saccades, but the role of vIPS appears to be minimal. The latter finding disfavors the premotor theory of attention, as it suggests that the relation between attention and action is less direct.


Experimental Brain Research | 1999

Integration of visual and somatosensory target information in goal-directed eye and arm movements

Sebastiaan F. W. Neggers; Harold Bekkering

Abstract In this study, we compared separate and coordinated eye and hand movements towards visual or somatosensory target stimuli in a dark room, where no visual position information about the hand could be obtained. Experiment 1 showed that saccadic reaction times (RTs) were longer when directed to somatosensory targets than when directed to visual targets in both single- and dual-task conditions. However, for hand movements, this pattern was only found in the dual-task condition and not in the single-task condition. Experiment 1 also showed that correlations between saccadic and hand RTs were significantly higher when directed towards somatosensory targets than when directed towards visual targets. Importantly, experiment 2 indicated that this was not caused by differences in processing times at a perceptual level. Furthermore, hand-pointing accuracy was found to be higher when subjects had to move their eyes as well (dual task) compared to a single-task hand movement. However, this effect was more pronounced for movements to visual targets than to somatosensory targets. A schematic model of sensorimotor transformations for saccadic eye and goal-directed hand movements is proposed and possible shared mechanisms of the two motor systems are discussed.


Schizophrenia Bulletin | 2012

Auditory Hallucinations Elicit Similar Brain Activation in Psychotic and Nonpsychotic Individuals

Kelly M. J. Diederen; Kirstin Daalman; Antoin D. de Weijer; Sebastiaan F. W. Neggers; Willemijn A. van Gastel; Jan Dirk Blom; René S. Kahn; Iris E. Sommer

While auditory verbal hallucinations (AVH) are most characteristic for schizophrenia, they also occur in nonpsychotic individuals in the absence of a psychiatric or neurological disorder and in the absence of substance abuse. At present, it is unclear if AVH in these nonpsychotic individuals constitute the same phenomenon as AVH in psychotic patients. Comparing brain activation during AVH between nonpsychotic and psychotic individuals could provide important clues regarding this question. 21 nonpsychotic subjects with AVH and 21 matched psychotic patients indicated the presence of AVH during 3T functional magnetic resonance imaging (fMRI) scanning. To identify common areas of activation during the experience of AVH in both groups, a conjunction analysis was performed. In addition, a 2-sample t-test was employed to discover possible differences in AVH-related activation between the groups. Several common areas of activation were observed for the psychotic and nonpsychotic subjects during the experience of AVH, consisting of the bilateral inferior frontal gyri, insula, superior temporal gyri, supramarginal gyri and postcentral gyri, left precentral gyrus, inferior parietal lobule, superior temporal pole, and right cerebellum. No significant differences in AVH-related brain activation were present between the groups. The presence of multiple common areas of AVH-related activation in psychotic and nonpsychotic individuals, in the absence of significant differences, implicates the involvement of the same cortical network in the experience of AVH in both groups.


Human Movement Science | 2002

Coordinated control of eye and hand movements in dynamic reaching

Sebastiaan F. W. Neggers; Harold Bekkering

In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions. In the adapted pointing condition, subjects had to direct both their gaze and arm movements to a displaced target location. The results showed that the eyes could fixate the new target during pointing. In addition, a temporal coupling of these corrective saccades was found with changes in arm movement trajectories when reaching to the new target. In the sustained pointing condition, however, the same subjects had to point to the initial target, while trying to deviate their gaze to a new target that appeared during pointing. It was found that the eyes could not fixate the new target before the hand reached the initial target location. Together, the results indicate that ocular gaze is always forced to follow the target intended by a manual arm movement. A neural mechanism is proposed that couples ocular gaze to the target of an arm movement. Specifically, the mechanism includes a reach neuron layer besides the well-known saccadic layer in the primate superior colliculus. Such a tight, sub-cortical coupling of ocular gaze to the target of a reaching movement can explain the contrasting behavior of the eyes in dependency of whether the eye and hand share the same target position or attempt to move to different locations.


NeuroImage | 2008

Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample size

Bram B. Zandbelt; Thomas E. Gladwin; Mathijs Raemaekers; Mariët van Buuren; Sebastiaan F. W. Neggers; René S. Kahn; Nick F. Ramsey; Matthijs Vink

Functional magnetic resonance imaging (fMRI) can be used to detect experimental effects on brain activity across measurements. The success of such studies depends on the size of the experimental effect, the reliability of the measurements, and the number of subjects. Here, we report on the stability of fMRI measurements and provide sample size estimations needed for repeated measurement studies. Stability was quantified in terms of the within-subject standard deviation (sigma(w)) of BOLD signal changes across measurements. In contrast to correlation measures of stability, this statistic does not depend on the between-subjects variance in the sampled group. Sample sizes required for repeated measurements of the same subjects were calculated using this sigma(w). Ten healthy subjects performed a motor task on three occasions, separated by one week, while being scanned. In order to exclude training effects on fMRI stability, all subjects were trained extensively on the task. Task performance, spatial activation pattern, and group-wise BOLD signal changes were highly stable over sessions. In contrast, we found substantial fluctuations (up to half the size of the group mean activation level) in individual activation levels, both in ROIs and in voxels. Given this large degree of instability over sessions, and the fact that the amount of within-subject variation plays a crucial role in determining the success of an fMRI study with repeated measurements, improving stability is essential. In order to guide future studies, sample sizes are provided for a range of experimental effects and levels of stability. Obtaining estimates of these latter two variables is essential for selecting an appropriate number of subjects.

Collaboration


Dive into the Sebastiaan F. W. Neggers's collaboration.

Top Co-Authors

Avatar

Iris E. Sommer

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Bekkering

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge