Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastián A. Suárez is active.

Publication


Featured researches published by Sebastián A. Suárez.


Nature Communications | 2014

H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway.

Mirjam Eberhardt; Mária Dux; Barbara Namer; Jan Lj. Miljkovic; Nada Cordasic; Christine Will; Tatjana I. Kichko; Michael J. M. Fischer; Sebastián A. Suárez; Damian Bikiel; Karola Dorsch; Andreas Leffler; Alexandru Babes; Angelika Lampert; Jochen K. Lennerz; Johannes Jacobi; Marcelo A. Martí; Fabio Doctorovich; Edward D. Högestätt; Peter M. Zygmunt; Ivana Ivanović-Burmazović; Karl Messlinger; Peter W. Reeh; Milos R. Filipovic

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO–TRPA1–CGRP pathway. We propose that this neuroendocrine HNO–TRPA1–CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.


Journal of the American Chemical Society | 2013

Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO

Julie Heinecke; Chosu Khin; Jose Clayston Melo Pereira; Sebastián A. Suárez; Alexei V. Iretskii; Fabio Doctorovich; Peter C. Ford

The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.


Inorganic Chemistry | 2010

A Surface Effect Allows HNO/NO Discrimination by a Cobalt Porphyrin Bound to Gold

Sebastián A. Suárez; Mariano H. Fonticelli; Aldo A. Rubert; Ezequiel de la Llave; Damián A. Scherlis; R. C. Salvarezza; Marcelo A. Martí; Fabio Doctorovich

Nitroxyl (HNO) is a small short-lived molecule for which it has been suggested that it could be produced, under certain cofactors conditions, by nitric oxide (NO) synthases. Biologically relevant targets of HNO are heme proteins, thiols, molecular oxygen, NO, and HNO itself. Given the overlap of the targets and reactivity between NO and HNO, it is very difficult to discriminate their physiopathological role conclusively, and accurate discrimination between them still remains critical for interpretation of the ongoing research in this field. The high reactivity and stability of cobalt(II) porphyrins toward NO and the easy and efficient way of covalently joining porphyrins to electrodes through S-Au bonds prompted us to test cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl]porphyrin [Co(P)], as a possible candidate for the electrochemical discrimination of both species. For this purpose, first, we studied the reaction between NO, NO donors, and commonly used HNO donors, with Co(II)(P) and Co(III)(P). Second, we covalently attached Co(II)(P) to gold electrodes and characterized its redox and structural properties by electrochemical techniques as well as scanning tunneling microscopy, X-ray photoelectron spectroscopy, and solid-state density functional theory calculations. Finally, we studied electrochemically the NO and HNO donor reactions with the electrode-bound Co(P). Our results show that Co(P) is positioned over the gold surface in a lying-down configuration, and a surface effect is observed that decreases the Co(III)(P) (but not Co(III)(P)NO(-)) redox potential by 0.4 V. Using this information and when the potential is fixed to values that oxidize Co(III)(P)NO(-) (0.8 V vs SCE), HNO can be detected by amperometric techniques. Under these conditions, Co(P) is able to discriminate between HNO and NO donors, reacting with the former in a fast, efficient, and selective manner with concomitant formation of the Co(III)(P)NO(-) complex, while it is inert or reacts very slowly with NO donors.


Analytical Chemistry | 2013

Time-resolved electrochemical quantification of azanone (HNO) at low nanomolar level.

Sebastián A. Suárez; Damián E. Bikiel; Diana E. Wetzler; Marcelo A. Martí; Fabio Doctorovich

Azanone (HNO, nitroxyl) is a highly reactive and short-lived compound with intriguing and highly relevant properties. It has been proposed to be a reaction intermediate in several chemical reactions and an in vivo, endogenously produced key metabolite and/or signaling molecule. In addition, its donors have important pharmacological properties. Therefore, given its relevance and elusive nature (it reacts with itself very quickly), the development of reliable analytical methods for quantitative HNO detection is in high demand for the advancement of future research in this area. During the past few years, several methods were developed that rely on chemical reactions followed by mass spectrometry, high-performance liquid chromatography, UV-vis, or fluorescence-trapping-based methodologies. In this work, our recently developed HNO-sensing electrode, based on the covalent attachment of cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl] porphyrin [Co(P)] to a gold electrode, has been thoroughly characterized in terms of sensibility, accuracy, time-resolved detection, and compatibility with complex biologically compatible media. Our results show that the Co(P) electrode: (i) allows time-resolved detection and kinetic analysis of the electrode response (the underlying HNO-producing reactions can be characterized) (ii) is able to selectively detect and reliably quantify HNO in the 1-1000 nM range, and (iii) has good biological media compatibility (including cell culture), displaying a lack of spurious signals due to the presence of O2, NO, and other reactive nitrogen and oxygen species. In summary, the Co(P) electrode is to our knowledge the best prospect for use in studies investigating HNO-related chemical and biological reactions.


Journal of the American Chemical Society | 2015

Nitric oxide is reduced to HNO by proton-coupled nucleophilic attack by ascorbate, tyrosine, and other alcohols. A new route to HNO in biological media?

Sebastián A. Suárez; Nicolás I. Neuman; Martina Muñoz; Lucía P. Alvarez; Damián E. Bikiel; Carlos D. Brondino; Ivana Ivanović-Burmazović; Jan Lj. Miljkovic; Milos R. Filipovic; Marcelo A. Martí; Fabio Doctorovich

The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical.


Accounts of Chemical Research | 2014

Reactions of HNO with Metal Porphyrins: Underscoring the Biological Relevance of HNO

Fabio Doctorovich; Damián E. Bikiel; Juan Pellegrino; Sebastián A. Suárez; Marcelo A. Martí

Azanone ((1)HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angelis salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO. This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯. Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols. Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device.


Journal of Inorganic Biochemistry | 2013

The pH of HNO donation is modulated by ring substituents in Piloty's acid derivatives: azanone donors at biological pH☆

Kiran Sirsalmath; Sebastián A. Suárez; Damián E. Bikiel; Fabio Doctorovich

A group of Pilotys acid (N-hydroxybenzenesulfonamide) derivatives were synthesized and fully characterized in order to assess the rates and pH of HNO (azanone, nitroxyl) donation in aqueous media. The derivatives, with electron-withdrawing and -donating substituents include methyl, nitro, fluoro, tri-isopropyl, trifluoromethyl and methoxy groups. The most interesting modulation observed is the change in pH range in which the compounds are able to donate HNO. UV-visible kinetic measurements at different pH values were used to evaluate the decomposition rate of the donors. A novel technique based on electrochemical measurements using a Co-porphyrin sensor was used to assess the release of HNO as a function of pH, by direct measurement of [HNO]. The results were contrasted with DFT calculations in order to understand the electronic effects exerted by the ring substituents, which drastically modify the pH range of donation. For example, while Pilotys acid donates HNO from pH 9.3, the corresponding fluoro derivative starts donating at pH 4.0.


Inorganic Chemistry | 2014

Redox potential determines the reaction mechanism of HNO donors with Mn and Fe porphyrins: defining the better traps.

Lucía P. Alvarez; Sebastián A. Suárez; Damián E. Bikiel; Júlio S. Rebouças; Ines Batinic-Haberle; Marcelo A. Martí; Fabio Doctorovich

Azanone ((1)HNO, nitroxyl) is a highly reactive molecule with interesting chemical and biological properties. Like nitric oxide (NO), its main biologically related targets are oxygen, thiols, and metalloproteins, particularly heme proteins. As HNO dimerizes with a rate constant between 10(6) and 10(7) M(-1) s(-1), reactive studies are performed using donors, which are compounds that spontaneously release HNO in solution. In the present work, we studied the reaction mechanism and kinetics of two azanone donors Angelís Salt and toluene sulfohydroxamic acid (TSHA) with eight different Mn porphyrins as trapping agents. These porphyrins differ in their total peripheral charge (positively or negatively charged) and in their Mn(III)/Mn(II) reduction potential, showing for each case positive (oxidizing) and negative (reducing) values. Our results show that the reduction potential determines the azanone donor reaction mechanism. While oxidizing porphyrins accelerate decomposition of the donor, reducing porphyrins react with free HNO. Our results also shed light into the donor decomposition mechanism using ab initio methods and provide a thorough analysis of which MnP are the best candidates for azanone trapping and quantification experiments.


Journal of Inorganic Biochemistry | 2011

A protective protein matrix improves the discrimination of nitroxyl from nitric oxide by MnIII protoporphyrinate IX in aerobic media

Ignacio Boron; Sebastián A. Suárez; Fabio Doctorovich; Marcelo A. Martí; Sara E. Bari

The selectivity of MnIII/II porphyrinates toward nitroxyl or nitric oxide donors provides a convenient starting point for the development of new materials for the speciation of these nitrogen-containing redox relatives. In the present report, we describe the insertion of MnIII protoporphyrinate IX in apomyoglobin and its chemical behavior toward HNO or NO donors, either under anaerobic or aerobic conditions. For comparison and discussion, the MnIII porphyrinate, devoid of the protein matrix, was studied in parallel. The MnIII reconstituted globin successfully reacted with the nitroxyl donor trioxodinitrate, while it was unreactive toward NO or NO donors, in good agreement with previously reported data on water soluble MnIII porphyrinates. The estimated association rate constant for the reaction with the nitroxyl donor was of the same order of magnitude for the reconstituted globin and the free porphyrinate, suggesting that the protein environment is not involved in the reaction mechanism. In contrast, the reaction product exhibited enhanced stability in the presence of dioxygen only when the porphyrinate was included in the protein matrix; this feature is ascribed to the role of the distal residues on the metal centered reactivity. This behavior is required for spectroscopic detection under biologically relevant conditions.


Acta Crystallographica Section C-crystal Structure Communications | 2011

N-butylpyridinium undecachlorocarbadodecaborate and comparison with similar compounds.

Sebastián A. Suárez; Ana Foi; Shawn Eady; Anna Larsen; Fabio Doctorovich

The title compound, C(9)H(14)N(+)·CHB(11)Cl(11)(-), was obtained in the course of our continuing studies of the low-melting salts of closo- and nido-carborane cage anions with alkylpyridinium and dialkylimidazolium cations. The title compound is the first example of a pyridinium salt of a perchlorinated carborane anion. The structure consists of one N-butylpyridinium cation counterbalanced by one perchlorinated carborane cage anion per asymmetric unit. By changing the counter-ion, different packings are observed, and to try to understand this the new structure is compared with five similar compounds.

Collaboration


Dive into the Sebastián A. Suárez's collaboration.

Top Co-Authors

Avatar

Fabio Doctorovich

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Ricardo Baggio

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Marcelo A. Martí

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Damián E. Bikiel

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Miguel Angel Harvey

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Fabio D. Cukiernik

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Lucía P. Alvarez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Tapashi G. Roy

University of Chittagong

View shared research outputs
Top Co-Authors

Avatar

Damian Bikiel

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Juan Pellegrino

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge