Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Apprich is active.

Publication


Featured researches published by Sebastian Apprich.


Osteoarthritis and Cartilage | 2010

Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla

Sebastian Apprich; G.H. Welsch; Tallal C. Mamisch; Pavol Szomolanyi; Marius E. Mayerhoefer; Katja Pinker; Siegfried Trattnig

OBJECTIVE The aim of the study was to investigate the association of T2 relaxation times of the knee with early degenerative cartilage changes. Furthermore the impact of unloading the knee on T2 values was evaluated. METHODS Forty-three patients with knee pain and an ICRS (International Cartilage Repair Society) cartilage defect grade <or=2 were examined with 3T magnetic resonance imaging (MRI). Morphological cartilage grading was based on high-resolution proton-density (PD), turbo-spin-echo (TSE) and three-dimensional (3D) isotropic True fast imaging with steady-state precession (FISP) images of slices covering the cartilage layer above the posterior horn of the meniscus. T2 maps were calculated from a multi-echo, spin-echo (MESE) sequence, performed at the beginning and at the end of the scan (time interval 40 min). Influence of cartilage defect grading on deep, superficial, and global T2 values as well as on T2 values for zonal variation was assessed using analysis of variance (ANOVA) and Spearman rank correlation test. Differences among both T2 measurements were compared using paired t-test. RESULTS Global and superficial T2 values significantly increased with cartilage defect grade regardless of the time elapsed from unloading (global T2: ICRS grade 0, 38.9 and 40.1 ms; grade 1, 41.2 and 44.5 ms; grade 2, 47.7 and 53.4 ms; P=0.041 and 0.008) with stronger correlation for second T2 measurement. In contrast there were no significant differences among grades in the zonal variation at any time. Significant differences for T2 values between the two subsequent measurements were consistently found. CONCLUSION T2 mapping might be a sensitive method for the detection of early cartilage degeneration. From our results we would recommend to measure T2 after unloading.


Osteoarthritis and Cartilage | 2012

Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation

I. Krusche-Mandl; B. Schmitt; Lukas Zak; Sebastian Apprich; Silke Aldrian; Vladimir Juras; Klaus M. Friedrich; Stefan Marlovits; Michael Weber; Siegfried Trattnig

OBJECTIVE To correlate long-term clinical outcome and the results of morphological as well as advanced biochemical magnetic resonance imaging (MRI) techniques [T2-mapping, glycosaminoglycan chemical exchange saturation transfer (gagCEST), sodium-23-imaging] in patients after autologous osteochondral transplantation (AOT) in knee joints. METHOD Nine AOT patients (two female and seven male; median age, 49) had clinical [International Knee Documentation Committee (IKDC), modified Lysholm, visual analog scale (VAS)] and radiological long-term follow-up examinations at a median of 7.9 years (inter-quartile range, 7.7-8.2). Standard morphological MRI and T2-mapping of cartilage were performed on a 3 T MR unit. Biochemical imaging further included sodium-23-imaging and chemical exchange saturation transfer (CEST) imaging at 7 T. The Magnetic resonance Observation of CArtilage Repair Tissue (MOCART) score was used for quantitative assessment of morphological MRI. RESULTS Clinical outcome was good with a median modified Lysholm score of 90. Median VAS revealed 1.0 and median MOCART score 75 points. The difference between native and repair cartilage was statistically significant for all three biochemical imaging techniques. The strongest correlation was found between the results of the advanced biochemical imaging methods sodium-23 and CEST [ρ = 0.952, 95% confidence interval (CI): (0.753; 0.992)]. Comparing the results from morphological and biochemical imaging, a correlation was found between MOCART score and CEST ratio [ρ = -0.749, 95% CI: (-0.944; -0.169)]. Comparing the results from clinical scores with MRI, a correlation between modified Lysholm and T2-mapping [ρ = -0.667, 95% CI: (-0.992; -0.005)] was observed. CONCLUSION Long-term clinical outcome in patients 7.9 years after AOT was good, but did not correlate with morphological and biochemical imaging results except for T2-mapping.


European Journal of Radiology | 2012

Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee.

Sebastian Apprich; Tallal C. Mamisch; G.H. Welsch; David Stelzeneder; Christoph E. Albers; U. Totzke; Siegfried Trattnig

Objective The aim of the study was to explore the sensitivity and robustness of T2 mapping in the detection and quantification of early degenerative cartilage changes at the patella. Materials and methods Forty-two patients (22 women, 20 men) with a mean age of 30.3 years and a symptomatic cartilage defect of ICRS grade ≤2 were examined using a 3 T MRI with an 8-channel knee coil. The cartilage lesion was graded based on high-resolution PD TSE and 3D isotropic TrueFISP images. T2 maps were calculated from a standard MESE-sequence, performed at the beginning and at the end of the scan (40 min in-between). Depending on the defect size, a region-of-interest (ROI) analysis was performed on 1–3 consecutive slices. Mean T2 values for the deep, superficial, and global layer as well as the zonal variation were compared among defect grades (ANOVA, post hoc Duncan-test) and over time (Students t-test). Results T2-measurements directly correlated with the extent of cartilage defect (ICRS grade) at all layers and at both time-points. However, correlations were closer for the second measurement at the end of the scan. In this unloaded state, differences in T2-values became more pronounced and were significant even between cartilage of normal appearance adjacent to the defect and healthy cartilage of control patients (both ICRS grade 0). In contrast, there were no such differences among grades in the zonal variation at any time. Conclusion T2 mapping might be a sensitive method for the detection of early cartilage degeneration at the patella in the unloaded joint.


Osteoarthritis and Cartilage | 2012

Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla

Sebastian Apprich; Siegfried Trattnig; G.H. Welsch; I.M. Noebauer-Huhmann; M. Sokolwski; C. Hirschfeld; David Stelzeneder; Stephan Domayer

OBJECTIVE The objective was to compare patients after matrix-associated autologous chondrocyte transplantation (MACT) and microfracture therapy (MFX) of the talus using diffusion-weighted imaging (DWI), with morphological and clinical scoring. MATERIALS AND METHODS Twenty patients treated with MACT or MFX (10 per group) were examined using 3 T magnetic resonance imaging (MRI) at 48 ± 21.5 and 59.6 ± 23 months after surgery, respectively. For comparability, patients from each group were matched by age, body mass index, and follow-up. American Orthopaedic Foot and Ankle Society (AOFAS) score served as clinical assessment tool pre- and postoperatively. DWI was obtained using a partially balanced, steady-state gradient echo pulse sequence, as well as the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score, based on a 2D proton density-weighted turbo spin-echo sequence and a 3D isotropic true fast imaging with steady-state precession sequence. Semi-quantitative diffusion quotients were calculated after region of interest analysis of repair tissue (RT) and healthy control cartilage, and compared among both groups. RESULTS The mean AOFAS score improved significantly (P = 0.001) for both groups (MACT: 48.8 ± 20.4-83.6 ± 9.7; MFX: 44.3 ± 16.5-77.6 ± 13.2). No differences in the AOFAS (P = 0.327) and MOCART (P = 0.720) score were observed between MACT and MFX postoperatively. DWI distinguished between healthy cartilage and cartilage RT in the MFX group (P = 0.016), but not after MACT treatment (P = 0.105). Significant correlations were found between MOCART score and DWI index after MFX (Pearson: -0.648; P = 0.043), and between the diffusivity and longer follow-up interval in MACT group (Pearson: -0.647, P = 0.043). CONCLUSION Whereas conventional scores reveal a similar outcome after MACT or MFX treatment in the ankle joint, DWI was able to distinguish between different RT qualities, as reported histologically for these diverse surgical procedures.


Osteoarthritis and Cartilage | 2012

Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation

Stephan Domayer; Sebastian Apprich; David Stelzeneder; C. Hirschfeld; M. Sokolowski; C. Kronnerwetter; Catharina Chiari; Reinhard Windhager; Siegfried Trattnig

BACKGROUND Both microfracture (MFX) and matrix associated autologous cartilage transplantation (MACT) are currently used to treat cartilage defects of the talus. T2 mapping of the ankle at 7 T has the potential to assess the collagen fibril network organization of the native hyaline cartilage and of the repair tissue (RT). This study provides first results regarding the properties of cartilage RT after MFX (mean follow-up: 113.8 months) and MACT (65.4 months). METHODS A multi-echo spin-echo sequence was used at 7 T to assess T2 maps in 10 volunteer cases, and in 10 cases after MFX and MACT each. Proton weighted morphological images and clinical data were used to ensure comparable baseline criteria. RESULTS A significant zonal variation of T2 was found in the volunteers. T2 of the superficial and the deep layer was 39.3 ± 5.9 ms and 21.1 ± 3.1 ms (zonal T2 index calculated by superficial T2/deep T2: 1.87 ± 0.2, P < 0.001). In MFX, T2 of the reference cartilage was 37.4 ± 5.0 ms and 25.3 ± 3.5 ms (1.51 ± 0.3, P < 0.001). In the RT, T2 was 43.4 ± 10.5 ms and 36.3 ± 7.7 ms (1.20 ± 0.2, P = 0.009). In MACT, T2 of the reference cartilage was 39.0 ± 9.1 ms and 27.1 ± 6.6 ms (1.45 ± 0.2, P < 0.001). In the RT, T2 was 44.6 ± 10.4 ms and 38.6 ± 7.3 ms (1.15 ± 0.1, P = 0.003). The zonal RT T2 variation differed significantly from the reference cartilage in both techniques (MFX: P = 0.004, MACT: P = 0.001). CONCLUSION T2 mapping at 7 T allows for the quantitative assessment of the collagen network organization of the talus. MACT and MFX yielded RT with comparable T2 properties.


European Journal of Radiology | 2012

Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2*-mapping at 3 T MRI: A feasibility study

W. Marik; Sebastian Apprich; G.H. Welsch; Tallal C. Mamisch; Siegfried Trattnig

OBJECTIVE To perform an in vivo evaluation comparing overlying articular cartilage in patients suffering from osteochondrosis dissecans (OCD) in the talocrural joint and healthy volunteers using quantitative T2 mapping at 3.0 T. METHOD AND MATERIALS Ten patients with OCD of Grade II or lower and 9 healthy age matched volunteers were examined at a 3.0 T whole body MR scanner using a flexible multi-element coil. In all investigated persons MRI included proton-density (PD)-FSE and 3D GRE (TrueFisp) sequences for morphological diagnosis and location of anatomical site and quantitative T2 and T2 maps. Region of interest (ROI) analysis was performed for the cartilage layer above the OCD and for a morphologically healthy graded cartilage layer. Mean T2 and T2 values were then statistically analysed. RESULTS The cartilage layer of healthy volunteers showed mean T2 and T2 values of 29.4 ms (SD 4.9) and 11.8 ms (SD 2.7), respectively. In patients with OCD of grade I and II lesions mean T2 values were 40.9 ms (SD 6.6), 48.7 ms (SD 11.2) and mean T2 values were 16.1 ms (SD 3.2), 16.2 ms (SD 4.8). Therefore statistically significantly higher mean T2 and T2 values were found in patients suffering from OCD compared to healthy volunteers. CONCLUSION T2 and T2 mapping can help assess the microstructural composition of cartilage overlying osteochondral lesions.


European Radiology | 2013

Bi-exponential T2* analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score

Vladimir Juras; Sebastian Apprich; Pavol Szomolanyi; Oliver Bieri; Xeni Deligianni; Siegfried Trattnig

AbstractObjectiveTo compare mono- and bi-exponential T2* analysis in healthy and degenerated Achilles tendons using a recently introduced magnetic resonance variable-echo-time sequence (vTE) for T2* mapping.MethodsTen volunteers and ten patients were included in the study. A variable-echo-time sequence was used with 20 echo times. Images were post-processed with both techniques, mono- and bi-exponential [T2*m, short T2* component (T2*s) and long T2* component (T2*l)]. The number of mono- and bi-exponentially decaying pixels in each region of interest was expressed as a ratio (B/M). Patients were clinically assessed with the Achilles Tendon Rupture Score (ATRS), and these values were correlated with the T2* values.ResultsThe means for both T2*m and T2*s were statistically significantly different between patients and volunteers; however, for T2*s, the P value was lower. In patients, the Pearson correlation coefficient between ATRS and T2*s was −0.816 (P = 0.007).ConclusionThe proposed variable-echo-time sequence can be successfully used as an alternative method to UTE sequences with some added benefits, such as a short imaging time along with relatively high resolution and minimised blurring artefacts, and minimised susceptibility artefacts and chemical shift artefacts. Bi-exponential T2* calculation is superior to mono-exponential in terms of statistical significance for the diagnosis of Achilles tendinopathy.Key Points• Magnetic resonance imaging offers new insight into healthy and diseased Achilles tendons • Bi-exponential T2* calculation in Achilles tendons is more beneficial than mono-exponential • A short T2* component correlates strongly with clinical score • Variable echo time sequences successfully used instead of ultrashort echo time sequences


Magnetic Resonance in Medicine | 2014

Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence

Vladimir Juras; Sebastian Apprich; Štefan Zbýň; Lukas Zak; Xeni Deligianni; Pavol Szomolanyi; Oliver Bieri; Siegfried Trattnig

The goal of this study was to differentiate between normal, degenerative meniscus, and meniscal tears using monoexponentially and biexponentially calculated T2*. Meniscal disease, characterized by an altered collagen fiber matrix, might be detectable in vivo using quantitative T2* mapping.


Investigative Radiology | 2015

Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results.

Štefan Zbýň; Martin Brix; Vladimir Juras; Stephan Domayer; Sonja M. Walzer; Vladimir Mlynarik; Sebastian Apprich; Kai Buckenmaier; Reinhard Windhager; Siegfried Trattnig

ObjectivesThe goal of cartilage repair techniques such as microfracture (MFX) or matrix-associated autologous chondrocyte transplantation (MACT) is to produce repair tissue (RT) with sufficient glycosaminoglycan (GAG) content. Sodium magnetic resonance imaging (MRI) offers a direct and noninvasive evaluation of the GAG content in native cartilage and RT. In the femoral cartilage, this method was able to distinguish between RTs produced by MFX and MACT having different GAG contents. However, it needs to be clarified whether sodium MRI can be useful for evaluating RT in thin ankle cartilage. Thus, the aims of this 7-T study were (1) to validate our sodium MRI protocol in cadaver ankle samples, (2) to evaluate the sodium corrected signal intensities (cSI) in cartilage of volunteers, (3) and to compare sodium values in RT between patients after MFX and MACT treatment. Materials and MethodsFive human cadaver ankle samples as well as ankles of 9 asymptomatic volunteers, 6 MFX patients and 6 MACT patients were measured in this 7-T study. Sodium values from the ankle samples were compared with histochemically evaluated GAG content. In the volunteers, sodium cSI values were calculated in the cartilages of ankle and subtalar joint. In the patients, sodium cSI in RT and reference cartilage were measured, morphological appearance of RT was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system, and clinical outcome before and after surgery was assessed using the American Orthopaedic Foot and Ankle Society score and Modified Cincinnati Knee Scale. All regions of interest were defined on morphological images and subsequently transferred to the corresponding sodium images. Analysis of variance, t tests, and Pearson correlation coefficients were evaluated. ResultsIn the patients, significantly lower sodium cSI values were found in RT than in reference cartilage for the MFX (P = 0.007) and MACT patients (P = 0.008). Sodium cSI and MOCART scores in RT did not differ between the MFX and MACT patients (P = 0.185). No significant difference in sodium cSI was found between reference cartilage of the volunteers and the patients (P = 0.355). The patients showed significantly higher American Orthopaedic Foot and Ankle Society and Modified Cincinnati scores after treatment than they did before treatment. In the volunteers, sodium cSI was significantly higher in the tibial cartilage than in the talar cartilage of ankle joint (P = 0.002) and in the talar cartilage than in the calcaneal cartilage of subtalar joint (P < 0.001). Data from the cadaver ankle samples showed a strong linear relationship between the sodium values and the histochemically determined GAG content (r = 0.800; P < 0.001; R2 = 0.639). ConclusionsThis study demonstrates the feasibility of in vivo quantification of sodium cSI, which can be used for GAG content evaluation in thin cartilages of ankle and subtalar joints at 7 T. A strong correlation observed between the histochemically evaluated GAG content and the sodium values proved the sufficient sensitivity of sodium MRI to changes in the GAG content of cartilages in the ankle. Both MFX and MACT produced RT with lower sodium cSI and, thus, of lower quality compared with reference cartilage in the patients or in the volunteers. Our results suggest that MFX and MACT produce RT with similar GAG content and similar morphological appearance in patients with similar surgery outcome. Sodium MRI at 7 T allows a quantitative evaluation of RT quality in the ankle and may thus be useful in the noninvasive assessment of new cartilage repair procedures.


Skeletal Radiology | 2013

Impact of different coils on biochemical T2 and T2* relaxation time mapping of articular patella cartilage

Milena Pachowsky; Siegfried Trattnig; Sebastian Apprich; Andreas Mauerer; Stephan Zbyn; Goetz H. Welsch

AbstractObjectiveThe purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values.MethodsFifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed.ResultsThe mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping).ConclusionsThe present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.

Collaboration


Dive into the Sebastian Apprich's collaboration.

Top Co-Authors

Avatar

Siegfried Trattnig

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Stephan Domayer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Reinhard Windhager

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goetz H. Welsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Pavol Szomolanyi

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

David Stelzeneder

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

G.H. Welsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Vladimir Juras

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge