Sebastian Bodenstedt
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Bodenstedt.
IEEE Transactions on Medical Imaging | 2014
Lena Maier-Hein; Anja Groch; A. Bartoli; Sebastian Bodenstedt; G. Boissonnat; Ping-Lin Chang; Neil T. Clancy; Daniel S. Elson; S. Haase; E. Heim; Joachim Hornegger; Pierre Jannin; Hannes Kenngott; Thomas Kilgus; B. Muller-Stich; D. Oladokun; Sebastian Röhl; T. R. Dos Santos; Heinz Peter Schlemmer; Alexander Seitel; Stefanie Speidel; Martin Wagner; Danail Stoyanov
Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper.
Medical Physics | 2012
Sebastian Röhl; Sebastian Bodenstedt; Stefan Suwelack; Hannes Kenngott; Beat P. Müller-Stich; Rüdiger Dillmann; Stefanie Speidel
PURPOSE In laparoscopic surgery, soft tissue deformations substantially change the surgical site, thus impeding the use of preoperative planning during intraoperative navigation. Extracting depth information from endoscopic images and building a surface model of the surgical field-of-view is one way to represent this constantly deforming environment. The information can then be used for intraoperative registration. Stereo reconstruction is a typical problem within computer vision. However, most of the available methods do not fulfill the specific requirements in a minimally invasive setting such as the need of real-time performance, the problem of view-dependent specular reflections and large curved areas with partly homogeneous or periodic textures and occlusions. METHODS In this paper, the authors present an approach toward intraoperative surface reconstruction based on stereo endoscopic images. The authors describe our answer to this problem through correspondence analysis, disparity correction and refinement, 3D reconstruction, point cloud smoothing and meshing. Real-time performance is achieved by implementing the algorithms on the gpu. The authors also present a new hybrid cpu-gpu algorithm that unifies the advantages of the cpu and the gpu version. RESULTS In a comprehensive evaluation using in vivo data, in silico data from the literature and virtual data from a newly developed simulation environment, the cpu, the gpu, and the hybrid cpu-gpu versions of the surface reconstruction are compared to a cpu and a gpu algorithm from the literature. The recommended approach toward intraoperative surface reconstruction can be conducted in real-time depending on the image resolution (20 fps for the gpu and 14fps for the hybrid cpu-gpu version on resolution of 640 × 480). It is robust to homogeneous regions without texture, large image changes, noise or errors from camera calibration, and it reconstructs the surface down to sub millimeter accuracy. In all the experiments within the simulation environment, the mean distance to ground truth data is between 0.05 and 0.6 mm for the hybrid cpu-gpu version. The hybrid cpu-gpu algorithm shows a much more superior performance than its cpu and gpu counterpart (mean distance reduction 26% and 45%, respectively, for the experiments in the simulation environment). CONCLUSIONS The recommended approach for surface reconstruction is fast, robust, and accurate. It can represent changes in the intraoperative environment and can be used to adapt a preoperative model within the surgical site by registration of these two models.
medical image computing and computer assisted intervention | 2014
Lena Maier-Hein; Sven Mersmann; Daniel Kondermann; Sebastian Bodenstedt; Alexandro Sanchez; Christian Stock; Hannes Kenngott; Mathias Eisenmann; Stefanie Speidel
Machine learning algorithms are gaining increasing interest in the context of computer-assisted interventions. One of the bottlenecks so far, however, has been the availability of training data, typically generated by medical experts with very limited resources. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online community. In this work, we investigate the potential of crowdsourcing for segmenting medical instruments in endoscopic image data. Our study suggests that (1) segmentations computed from annotations of multiple anonymous non-experts are comparable to those made by medical experts and (2) training data generated by the crowd is of the same quality as that annotated by medical experts. Given the speed of annotation, scalability and low costs, this implies that the scientific community might no longer need to rely on experts to generate reference or training data for certain applications. To trigger further research in endoscopic image processing, the data used in this study will be made publicly available.
Medical Physics | 2014
Stefan Suwelack; Sebastian Röhl; Sebastian Bodenstedt; Daniel Reichard; Rüdiger Dillmann; Thiago R. Dos Santos; Lena Maier-Hein; Martin Wagner; Josephine Wünscher; Hannes Kenngott; Beat Müller; Stefanie Speidel
PURPOSE Soft-tissue deformations can severely degrade the validity of preoperative planning data during computer assisted interventions. Intraoperative imaging such as stereo endoscopic, time-of-flight or, laser range scanner data can be used to compensate these movements. In this context, the intraoperative surface has to be matched to the preoperative model. The shape matching is especially challenging in the intraoperative setting due to noisy sensor data, only partially visible surfaces, ambiguous shape descriptors, and real-time requirements. METHODS A novel physics-based shape matching (PBSM) approach to register intraoperatively acquired surface meshes to preoperative planning data is proposed. The key idea of the method is to describe the nonrigid registration process as an electrostatic-elastic problem, where an elastic body (preoperative model) that is electrically charged slides into an oppositely charged rigid shape (intraoperative surface). It is shown that the corresponding energy functional can be efficiently solved using the finite element (FE) method. It is also demonstrated how PBSM can be combined with rigid registration schemes for robust nonrigid registration of arbitrarily aligned surfaces. Furthermore, it is shown how the approach can be combined with landmark based methods and outline its application to image guidance in laparoscopic interventions. RESULTS A profound analysis of the PBSM scheme based on in silico and phantom data is presented. Simulation studies on several liver models show that the approach is robust to the initial rigid registration and to parameter variations. The studies also reveal that the method achieves submillimeter registration accuracy (mean error between 0.32 and 0.46 mm). An unoptimized, single core implementation of the approach achieves near real-time performance (2 TPS, 7-19 s total registration time). It outperforms established methods in terms of speed and accuracy. Furthermore, it is shown that the method is able to accurately match partial surfaces. Finally, a phantom experiment demonstrates how the method can be combined with stereo endoscopic imaging to provide nonrigid registration during laparoscopic interventions. CONCLUSIONS The PBSM approach for surface matching is fast, robust, and accurate. As the technique is based on a preoperative volumetric FE model, it naturally recovers the position of volumetric structures (e.g., tumors and vessels). It cannot only be used to recover soft-tissue deformations from intraoperative surface models but can also be combined with landmark data from volumetric imaging. In addition to applications in laparoscopic surgery, the method might prove useful in other areas that require soft-tissue registration from sparse intraoperative sensor data (e.g., radiation therapy).
Computerized Medical Imaging and Graphics | 2013
Darko Katic; Anna-Laura Wekerle; Jochen Görtler; Patrick Spengler; Sebastian Bodenstedt; Sebastian Röhl; Stefan Suwelack; Hannes Kenngott; Martin Wagner; Beat P. Müller-Stich; Rüdiger Dillmann; Stefanie Speidel
Augmented Reality is a promising paradigm for intraoperative assistance. Yet, apart from technical issues, a major obstacle to its clinical application is the man-machine interaction. Visualization of unnecessary, obsolete or redundant information may cause confusion and distraction, reducing usefulness and acceptance of the assistance system. We propose a system capable of automatically filtering available information based on recognized phases in the operating room. Our system offers a specific selection of available visualizations which suit the surgeons needs best. The system was implemented for use in laparoscopic liver and gallbladder surgery and evaluated in phantom experiments in conjunction with expert interviews.
medical image computing and computer assisted intervention | 2014
Lena Maier-Hein; Sven Mersmann; Daniel Kondermann; Christian Stock; Hannes Kenngott; Alexandro Sanchez; Martin Wagner; Anas Preukschas; Anna-Laura Wekerle; Stefanie Helfert; Sebastian Bodenstedt; Stefanie Speidel
Computer-assisted minimally-invasive surgery (MIS) is often based on algorithms that require establishing correspondences between endoscopic images. However, reference annotations frequently required to train or validate a method are extremely difficult to obtain because they are typically made by a medical expert with very limited resources, and publicly available data sets are still far too small to capture the wide range of anatomical/scene variance. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online community. To our knowledge, this paper is the first to investigate the concept of crowdsourcing in the context of endoscopic video image annotation for computer-assisted MIS. According to our study on publicly available in vivo data with manual reference annotations, anonymous non-experts obtain a median annotation error of 2 px (n = 10,000). By applying cluster analysis to multiple annotations per correspondence, this error can be reduced to about 1 px, which is comparable to that obtained by medical experts (n = 500). We conclude that crowdsourcing is a viable method for generating high quality reference correspondences in endoscopic video images.
Proceedings of SPIE | 2011
Sebastian Röhl; Sebastian Bodenstedt; Stefan Suwelack; Hannes Kenngott; Mueller-Stich Bp; Rüdiger Dillmann; Stefanie Speidel
Minimally invasive surgery is a medically complex discipline that can heavily benefit from computer assistance. One way to assist the surgeon is to blend in useful information about the intervention into the surgical view using Augmented Reality. This information can be obtained during preoperative planning and integrated into a patient-tailored model of the intervention. Due to soft tissue deformation, intraoperative sensor data such as endoscopic images has to be acquired and non-rigidly registered with the preoperative model to adapt it to local changes. Here, we focus on a procedure that reconstructs the organ surface from stereo endoscopic images with millimeter accuracy in real-time. It deals with stereo camera calibration, pixel-based correspondence analysis, 3D reconstruction and point cloud meshing. Accuracy, robustness and speed are evaluated with images from a test setting as well as intraoperative images. We also present a workflow where the reconstructed surface model is registered with a preoperative model using an optical tracking system. As preliminary result, we show an initial overlay between an intraoperative and a preoperative surface model that leads to a successful rigid registration between these two models.
Proceedings of SPIE | 2011
Anja Groch; Alexander Seitel; Susanne Hempel; Stefanie Speidel; Rainer Engelbrecht; J. Penne; Kurt Höller; Sebastian Röhl; Kwong Yung; Sebastian Bodenstedt; Felix Pflaum; T. R. dos Santos; Sven Mersmann; Hans-Peter Meinzer; Joachim Hornegger; Lena Maier-Hein
One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patients anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organs surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.
medical image computing and computer-assisted intervention | 2016
Lena Maier-Hein; Tobias Ross; J. Gröhl; Ben Glocker; Sebastian Bodenstedt; Christian Stock; Eric Heim; Michael Götz; Sebastian J. Wirkert; Hannes Kenngott; Stefanie Speidel; Klaus H. Maier-Hein
With the recent breakthrough success of machine learning based solutions for automatic image annotation, the availability of reference image annotations for algorithm training is one of the major bottlenecks in medical image segmentation and many other fields. Crowdsourcing has evolved as a valuable option for annotating large amounts of data while sparing the resources of experts, yet, segmentation of objects from scratch is relatively time-consuming and typically requires an initialization of the contour. The purpose of this paper is to investigate whether the concept of crowd-algorithm collaboration can be used to simultaneously (1) speed up crowd annotation and (2) improve algorithm performance based on the feedback of the crowd. Our contribution in this context is two-fold: Using benchmarking data from the MICCAI 2015 endoscopic vision challenge we show that atlas forests extended by a novel superpixel-based confidence measure are well-suited for medical instrument segmentation in laparoscopic video data. We further demonstrate that the new algorithm and the crowd can mutually benefit from each other in a collaborative annotation process. Our method can be adapted to various applications and thus holds high potential to be used for large-scale low-cost data annotation.
Proceedings of SPIE | 2014
Stefanie Speidel; E. Kuhn; Sebastian Bodenstedt; Sebastian Röhl; Hannes Kenngott; Beat P. Müller-Stich; Rüdiger Dillmann
Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.