Sebastian Clauss
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Clauss.
Nature Genetics | 2012
Patrick T. Ellinor; Kathryn L. Lunetta; Christine M. Albert; Nicole L. Glazer; Marylyn D. Ritchie; Albert V. Smith; Dan E. Arking; Martina Müller-Nurasyid; Bouwe P. Krijthe; Steven A. Lubitz; Joshua C. Bis; Mina K. Chung; Marcus Dörr; Kouichi Ozaki; Jason D. Roberts; J. Gustav Smith; Arne Pfeufer; Moritz F. Sinner; Kurt Lohman; Jingzhong Ding; Nicholas L. Smith; Jonathan D. Smith; Michiel Rienstra; Kenneth Rice; David R. Van Wagoner; Jared W. Magnani; Reza Wakili; Sebastian Clauss; Jerome I. Rotter; Gerhard Steinbeck
Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 × 10−8). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.
Circulation | 2013
Kristin Dawson; Reza Wakili; Balázs Ördög; Sebastian Clauss; Yu Chen; Yu-ki Iwasaki; Niels Voigt; Xiao Yan Qi; Moritz F. Sinner; Dobromir Dobrev; Stefan Kääb; Stanley Nattel
Background— Congestive heart failure (CHF) causes atrial fibrotic remodeling, a substrate for atrial fibrillation (AF) maintenance. MicroRNA29 (miR29) targets extracellular matrix proteins. In the present study, we examined miR29b changes in patients with AF and/or CHF and in a CHF-related AF animal model and assessed its potential role in controlling atrial fibrous tissue production. Methods and Results— Control dogs were compared with dogs subjected to ventricular tachypacing for 24 hours, 1 week, or 2 weeks to induce CHF. Atrial miR29b expression decreased within 24 hours in both whole atrial tissue and atrial fibroblasts (−87% and −92% versus control, respectively; p<0.001 for both) and remained decreased throughout the time course. Expression of miR29b extracellular matrix target genes collagen-1A1 (COL1A1), collagen-3A1 (COL3A1), and fibrillin increased significantly in CHF fibroblasts. Lentivirus-mediated miR29b knockdown in canine atrial fibroblasts (−68%; p<0.01) enhanced COL1A1, COL3A1, and fibrillin mRNA expression by 28% (p<0.01), 19% (p<0.05), and 20% (p<0.05), respectively, versus empty virus–infected fibroblasts and increased COL1A1 protein expression by 90% (p<0.05). In contrast, 3-fold overexpression of miR29b decreased COL1A1, COL3A1, and fibrillin mRNA by 65%, 62%, and 61% (all p<0.001), respectively, versus scrambled control and decreased COL1A1 protein by 60% (p<0.05). MiR29b plasma levels were decreased in patients with CHF or AF (by 53% and 54%, respectively; both p<0.001) and were further decreased in patients with both AF and CHF (by 84%; p<0.001). MiR29b expression was also reduced in the atria of chronic AF patients (by 54% versus sinus rhythm; p<0.05). Adenoassociated viral–mediated knockdown of miR29b in mice significantly increased atrial COL1A1 mRNA expression and cardiac tissue collagen content. Conclusions— MiR29 likely plays a role in atrial fibrotic remodeling and may have value as a biomarker and/or therapeutic target.
Cell | 2017
Maarten Hulsmans; Sebastian Clauss; Ling Xiao; Aaron D. Aguirre; Kevin R. King; Alan Hanley; William J. Hucker; Eike M. Wülfers; Gunnar Seemann; Gabriel Courties; Yoshiko Iwamoto; Yuan Sun; Andrej J. Savol; Hendrik B. Sager; Kory J. Lavine; Gregory A. Fishbein; Diane E. Capen; Nicolas Da Silva; Lucile Miquerol; Hiroko Wakimoto; Christine E. Seidman; Jonathan G. Seidman; Ruslan I. Sadreyev; Kamila Naxerova; Richard N. Mitchell; Dennis Brown; Peter Libby; Ralph Weissleder; Filip K. Swirski; Peter Kohl
Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.
PLOS ONE | 2011
Veronika Skuginna; Maciej Lech; Ramanjaneyulu Allam; Mi Ryu; Sebastian Clauss; Heni Eka Susanti; Christoph Römmele; Cecilia Garlanda; Alberto Mantovani; Hans-Joachim Anders
Innate immune activation via IL-1R or Toll-like receptors (TLR) contibutes to acute kidney injury but its role in tissue remodeling during chronic kidney disease is unclear. SIGIRR is an inhibitor of TLR-induced cytokine and chemokine expression in intrarenal immune cells, therefore, we hypothesized that Sigirr-deficiency would aggravate postobstructive renal fibrosis. The expression of TLRs as well as endogenous TLR agonists increased within six days after UUO in obstructed compared to unobstructed kidneys while SIGIRR itself was downregulated by day 10. However, lack of SIGIRR did not affect the intrarenal mRNA expression of proinflammatory and profibrotic mediators as well as the numbers of intrarenal macrophages and T cells or morphometric markers of tubular atrophy and interstitial fibrosis. Because SIGIRR is known to block TLR/IL-1R signaling at the level of the intracellular adaptor molecule MyD88 UUO experiments were also performed in mice deficient for either MyD88, TLR2 or TLR9. After UUO there was no significant change of tubular interstitial damage and interstitial fibrosis in neither of these mice compared to wildtype counterparts. Additional in-vitro studies with CD90+ renal fibroblasts revealed that TLR agonists induce the expression of IL-6 and MCP-1/CCL2 but not of TGF-β, collagen-1α or smooth muscle actin. Together, postobstructive renal interstitial fibrosis and tubular atrophy develop independent of SIGIRR, TLR2, TLR9, and MyD88. These data argue against a significant role of these molecules in renal fibrosis.
The Journal of Pathology | 2009
Sebastian Clauss; Oliver Gross; Onkar P. Kulkarni; Alejandro Avila-Ferrufino; Ewa Radomska; Stephan Segerer; Dirk Eulberg; Sven Klussmann; Hans-Joachim Anders
Lack of the α3 or α4 chain of type IV collagen (COL4) causes autosomal recessive Alport nephropathy in humans and mice that is characterized by progressive glomerulosclerosis and tubulointerstitial disease. Renal pathology is associated with chemokine‐mediated macrophage infiltrates but their contribution to the progression of Alport nephropathy is unclear. We found Ccl2 to be expressed in increasing amounts during the progression of nephropathy in Col4a3‐deficient mice; hence, we blocked Ccl2 with anti‐Ccl2 Spiegelmers, biostable L‐enantiomeric RNA aptamers suitable for in vivo applications. Ccl2 blockade reduced the recruitment of ex vivo‐labelled macrophages into kidneys of Col4a3‐deficient mice. We therefore hypothesized that a prolonged course of Ccl2 blockade would reduce renal macrophage counts and prevent renal pathology in Col4a3‐deficient mice. Groups of Col4a3‐deficient mice received subcutaneous injections of either an anti‐mCcl2 Spiegelmer or non‐functional control Spiegelmer on alternate days, starting from day 21 or 42 of age. Glomerular and interstitial macrophage counts were found to be reduced with Ccl2 blockade by 50% and 30%, respectively. However, this was not associated with an improvement of glomerular pathology, interstitial pathology, or of overall survival of Col4a3‐deficient mice. We conclude that Ccl2 mediates the recruitment of glomerular and interstitial macrophages but this mechanism does not contribute to the progression of Alport nephropathy in Col4a3‐deficient mice. Copyright
PLOS ONE | 2017
Charlotte Glinge; Sebastian Clauss; Kim Boddum; Reza Jabbari; Javad Jabbari; Bjarke Risgaard; Philipp Tomsits; Bianca Hildebrand; Stefan Kääb; Reza Wakili; Thomas Jespersen; Jacob Tfelt-Hansen
Background and aim The potential of microRNAs (miRNA) as non-invasive diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, has recently been recognized. Previous studies have highlighted the importance of consistency in the methodology used, but to our knowledge, no study has described the methodology of sample preparation and storage systematically with respect to miRNAs as blood biomarkers. The aim of this study was to investigate the stability of miRNAs in blood under various relevant clinical and research conditions: different collection tubes, storage at different temperatures, physical disturbance, as well as serial freeze-thaw cycles. Methods Blood samples were collected from 12 healthy donors into different collection tubes containing anticoagulants, including EDTA, citrate and lithium-heparin, as well as into serum collection tubes. MiRNA stability was evaluated by measuring expression changes of miR-1, miR-21 and miR-29b at different conditions: varying processing time of whole blood (up to 72 hours (h)), long-term storage (9 months at -80°C), physical disturbance (1 and 8 h), as well as in a series of freeze/thaw cycles (1 and 4 times). Results Different collection tubes revealed comparable concentrations of miR-1, miR-21 and miR-29b. Tubes with lithium-heparin were found unsuitable for miRNA quantification. MiRNA levels were stable for at least 24 h at room temperature in whole blood, while separated fractions did show alterations within 24 h. There were significant changes in the miR-21 and miR-29b levels after 72 h incubation of whole blood at room temperature (p<0.01 for both). Both miR-1 and miR-21 showed decreased levels after physical disturbance for 8 h in separated plasma and miR-1 in serum whole blood, while after 1 h of disturbance no changes were observed. Storage of samples at -80°C extended the miRNA stability remarkably, however, miRNA levels in long-term stored (9 months) whole blood samples were significantly changed, which is in contrast to the plasma samples, where miR-21 or miR-29b levels were found to be stable. Repetitive (n = 4) freeze-thaw cycles resulted in a significant reduction of miRNA concentration both in plasma and serum samples. Conclusion This study highlights the importance of proper and systematic sample collection and preparation when measuring circulating miRNAs, e.g., in context of clinical trials. We demonstrated that the type of collection tubes, preparation, handling and storage of samples should be standardized to avoid confounding variables influencing the results.
Circulation Research | 2012
Hans-Peter Holthoff; Stefan Zeibig; Valerie Jahns-Boivin; Johannes Bauer; Martin J. Lohse; Stefan Kääb; Sebastian Clauss; Roland Jahns; Angela Schlipp; Götz Münch; Martin Ungerer
Rationale: Autoantibodies directed against the second extracellular loop of the cardiac &bgr;1-adrenergic receptor (&bgr;1-AR) are thought to contribute to the pathogenesis of dilated cardiomyopathy (DCM) and Chagas heart disease. Various approaches have been used to detect such autoantibodies; however, the reported prevalence varies largely, depending on the detection method used. Objective: We analyzed sera from 167 DCM patients (ejection fraction <45%) and from 110 age-matched volunteers who did not report any heart disease themselves, with an often used simple peptide-ELISA approach, and compared it with a novel whole cell–based ELISA, using cells expressing the full transgene for the human &bgr;1-AR. Additionally, 35 patients with hypertensive heart disease with preserved ejection fraction were investigated. Methods and Results: The novel assay was designed according to the currently most reliable anti-TSH receptor antibody-ELISA used to diagnose Graves disease (“third-generation assay”) and also detects the target antibodies by competition with a specific monoclonal anti–&bgr;1-AR antibody (&bgr;1-AR MAb) directed against the functionally relevant &bgr;1-AR epitope. Anti–&bgr;1-AR antibodies were detected in ≈60% of DCM patients and in ≈8% of healthy volunteers using the same cutoff values. The prevalence of these antibodies was 17% in patients with hypertensive heart disease. Anti–&bgr;1-AR antibody titers (defined as inhibition of &bgr;1-AR MAb-binding) were no longer detected after depleting sera from IgG antibodies by protein G adsorption. In contrast, a previously used ELISA conducted with a linear 26-meric peptide derived from the second extracellular &bgr;1-AR loop yielded a high number of false-positive results precluding any specific identification of DCM patients. Conclusions: We established a simple and efficient screening assay detecting disease-relevant &bgr;1-AR autoantibodies in patient sera yielding a high reproducibility also in high throughput screening. The assay was validated according to “good laboratory practice” and can serve as a companion biodiagnostic assay for the development and evaluation of antibody-directed therapies in antibody-positive heart failure.
Journal of Molecular and Cellular Cardiology | 2014
Yu Chen; Reza Wakili; Jiening Xiao; Chia-Tung Wu; Xiaobin Luo; Sebastian Clauss; Kristin Dawson; Xiao-Yan Qi; Patrice Naud; Yanfen Shi; Jean-Claude Tardif; Stefan Kääb; Dobromir Dobrev; Stanley Nattel
Heart failure (HF) causes left-atrial (LA) and left-ventricular (LV) remodeling, with particularly-prominent changes in LA that create a substrate for atrial fibrillation (AF). MicroRNAs (miRs) are potential regulators in cardiac remodeling. This study evaluated time-dependent miR expression-changes in LA and LV tissue, fibroblasts and cardiomyocytes in experimental HF. HF was induced in dogs by ventricular tachypacing (varying periods, up to 2weeks). Following screening-microarray, 15 miRs were selected for detailed real-time qPCR assay. Extracellular matrix mRNA-expression was assessed by qPCR. Tachypacing time-dependently reduced LV ejection-fraction, increased LV-volume and AF-duration, and caused tissue-fibrosis with LA changes greater than LV. Tissue miR-expression significantly changed in LA for 10 miRs; in LV for none. Cell-selective analysis showed significant time-dependent changes in LA-fibroblasts for 10/15 miRs, LV-fibroblasts 8/15, LA-cardiomyocytes in 6/15 and LV-cardiomyocytes 3/15. Cell-expression specificity did not predict cell-specificity of VTP-induced expression-changes, e.g. 4/6 cardiomyocyte-selective miRs changed almost exclusively in fibroblasts (miR-1, miR-208b, miR133a/b). Thirteen miRs directly implicated in fibrosis/extracellular-matrix regulation were prominently changed: 9/13 showed fibroblast-selective alterations and 5/13 LA-selective. Multiple miRs changed in relation to associated extracellular-matrix targets. Experimental HF causes tissue and cell-type selective, time-dependent changes in cardiac miR-expression. Expression-changes are greater in LA versus LV, and greater in fibroblasts than cardiomyocytes, even for most cardiomyocyte-enriched miRs. This study, the first to examine time, chamber and cell-type selective changes in an experimental model of HF, suggests that multiple miR-changes underlie the atrial-selective fibrotic response and emphasize the importance of considering cell-specificity of miR expression-changes in cardiac remodeling paradigms.
Cardiovascular Research | 2016
Nathan R. Tucker; Sebastian Clauss; Patrick T. Ellinor
Atrial fibrillation (AF) is the most common cardiac arrhythmia with well-established clinical and genetic risk components. Genome-wide association studies (GWAS) have identified 17 independent susceptibility signals for AF at 14 genomic regions, but the mechanisms through which these loci confer risk to AF remain largely undefined. This problem is not unique to AF, as the field of functional genomics, which attempts to bridge this gap from genotype to phenotype, has only uncovered the mechanisms for a handful of GWAS loci. Recent functional genomic studies have made great strides towards translating genetic discoveries to an underlying mechanism, but the large-scale application of these techniques to AF has remain limited. These advances, as well as the continued unresolved challenges for both common variation in AF and the functional genomics field in general, will be the subject of the following review.
PLOS ONE | 2016
Sebastian Clauss; Reza Wakili; Bianca Hildebrand; Stefan Kääb; Eva Hoster; Ina Klier; Eimo Martens; Alan Hanley; Henner Hanssen; Martin Halle; Thomas Nickel
Introduction Physical activity is beneficial for individual health, but endurance sport is associated with the development of arrhythmias like atrial fibrillation. The underlying mechanisms leading to this increased risk are still not fully understood. MicroRNAs are important mediators of proarrhythmogenic remodeling and have potential value as biomarkers in cardiovascular diseases. Therefore, the objective of our study was to determine the value of circulating microRNAs as potential biomarkers for atrial remodeling in marathon runners (miRathon study). Methods 30 marathon runners were recruited into our study and were divided into two age-matched groups depending on the training status: elite (ER, ≥55 km/week, n = 15) and non-elite runners (NER, ≤40 km/week, n = 15). All runners participated in a 10 week training program before the marathon. MiRNA plasma levels were measured at 4 time points: at baseline (V1), after a 10 week training period (V2), immediately after the marathon (V3) and 24h later (V4). Additionally, we obtained clinical data including serum chemistry and echocardiography at each time point. Results MiRNA plasma levels were similar in both groups over time with more pronounced changes in ER. After the marathon miR-30a plasma levels increased significantly in both groups. MiR-1 and miR-133a plasma levels also increased but showed significant changes in ER only. 24h after the marathon plasma levels returned to baseline. MiR-26a decreased significantly after the marathon in elite runners only and miR-29b showed a non-significant decrease over time in both groups. In ER miRNA plasma levels showed a significant correlation with LA diameter, in NER miRNA plasma levels did not correlate with echocardiographic parameters. Conclusion MiRNAs were differentially expressed in the plasma of marathon runners with more pronounced changes in ER. Plasma levels in ER correlate with left atrial diameter suggesting that circulating miRNAs could potentially serve as biomarkers of atrial remodeling in athletes.