Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Diecke is active.

Publication


Featured researches published by Sebastian Diecke.


Nature Methods | 2014

Chemically defined generation of human cardiomyocytes

Paul W. Burridge; Elena Matsa; Praveen Shukla; Ziliang C Lin; Jared M. Churko; Antje D. Ebert; Feng Lan; Sebastian Diecke; Bruno C. Huber; Nicholas M. Mordwinkin; Jordan R. Plews; Oscar J. Abilez; Bianxiao Cui; Joseph D. Gold; Joseph C. Wu

Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule–based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2+ cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.Existing methodologies for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require the use of complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed a highly optimized cardiac differentiation strategy, employing a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate, and ricederived recombinant human albumin. Along with small molecule-based differentiation induction, this protocol produced contractile sheets of up to 95% TNNT2+ cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell, and was effective in 11 hiPSC lines tested. This is the first fully chemically defined platform for cardiac specification of hiPSCs, and allows Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Addresses for Correspondence: Joseph C. Wu, MD, PhD, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Room G1120B, Stanford, CA 94305-5454. [email protected] or Paul W. Burridge, PhD, [email protected]. Author Contributions P.W.B. conceived, performed, and interpreted the experiments and wrote the manuscript; E.M. performed cardiomyocyte immunofluorescence, single-cell RT-PCR, and electrophysiology data assessment; P.S., Z.L., and A.J.O. performed electrophysiology experiments and assessed data; S.D. provided CoMiP reprogrammed cells; B.H. performed teratoma assay; J.M.C. A.D.E, F.L., N.M.M., and J.R.P tested differentiation; B.C., J.D.G. provided experimental advice; and J.C.W. provided experimental advice, manuscript writing, and funding support. Competing Financial Interests JCW is a co-founder of Stem Cell Theranostics. Other authors declare no competing financial interests. HHS Public Access Author manuscript Nat Methods. Author manuscript; available in PMC 2015 February 01. Published in final edited form as: Nat Methods. 2014 August ; 11(8): 855–860. doi:10.1038/nmeth.2999. A uhor M anscript


Circulation | 2013

Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity

Ping Liang; Feng Lan; Andrew S. Lee; Tingyu Gong; Veronica Sanchez-Freire; Yongming Wang; Sebastian Diecke; Karim Sallam; Joshua W. Knowles; Paul J. Wang; Patricia K. Nguyen; Donald M. Bers; Robert C. Robbins; Joseph C. Wu

Background— Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. Methods and Results— Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell–derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go–related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. Conclusions— We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go–related gene test or healthy control hiPSC-CM/hESC-CM screening assays.


Journal of Biological Chemistry | 2013

The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells

Amit Sharma; Sebastian Diecke; Wendy Y. Zhang; Feng Lan; Chunjiang He; Nicholas M. Mordwinkin; Katrin F. Chua; Joseph C. Wu

Background: Human dermal fibroblasts (HDFs) from older subjects are known to be more resistant to reprogramming. Results: Inclusion of SIRT6 can significantly improve the reprogramming efficiency. Conclusion: Changes in SIRT6 expression and its posttranscriptional regulation may be relevant in aging. Significance: MiR-766-mediated posttranscriptional regulation of SIRT6 has implications in human aging. Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.


Nature Communications | 2014

Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance

Patricia E. de Almeida; Everett Meyer; Nigel G. Kooreman; Sebastian Diecke; Devaveena Dey; Veronica Sanchez-Freire; Shijun Hu; Antje D. Ebert; Justin I. Odegaard; Nick Mordwinkin; Thomas P. Brouwer; David Lo; Daniel T. Montoro; Michael T. Longaker; Robert S. Negrin; Joseph C. Wu

The exact nature of the immune response elicited by autologous induced pluripotent stem cell (iPSC) progeny is still not well understood. Here we show in murine models that autologous iPSC-derived endothelial cells (iECs) elicit an immune response that resembles the one against a comparable somatic cell, the aortic endothelial cell (AEC). These cells exhibit long-term survival in vivo and prompt a tolerogenic contexture of intra-graft characterized by elevated IL-10 expression. In contrast, undifferentiated iPSCs elicit a very different immune response with high lymphocytic infiltration and elevated IFN-γ, granzyme-B, and perforin intra-graft. Furthermore, the clonal structure of infiltrating T cells from iEC grafts is statistically indistinguishable from that of AECs, but is different from that of undifferentiated iPSC grafts. Taken together, our results indicate that the differentiation of iPSCs results in a loss of immunogenicity and leads to the induction of tolerance, despite expected antigen expression differences between iPSC-derived versus original somatic cells.


Circulation Research | 2014

Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform

Arun Sharma; Caleb Marceau; Ryoko Hamaguchi; Paul W. Burridge; Kuppusamy Rajarajan; Jared M. Churko; Haodi Wu; Karim Sallam; Elena Matsa; Anthony C. Sturzu; Yonglu Che; Antje D. Ebert; Sebastian Diecke; Ping Liang; Kristy Red-Horse; Jan E. Carette; Sean M. Wu; Joseph C. Wu

Rationale: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. Objective: This study examined whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferon&bgr;1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferon&bgr;1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.


Science Translational Medicine | 2014

Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system

Antje D. Ebert; Kazuki Kodo; Ping Liang; Haodi Wu; Bruno C. Huber; Johannes Riegler; Jared M. Churko; Jaecheol Lee; Patricia E. de Almeida; Feng Lan; Sebastian Diecke; Paul W. Burridge; Joseph D. Gold; Daria Mochly-Rosen; Joseph C. Wu

The decrease of function in the ALDH2*2 genotype disrupts an important cardioprotective oxidative stress regulatory circuit, thus increasing cardiac cell death after ischemic insult. Personalized Heart Healing In poetry, we welcome assaults to the heart that leave one breathless. But depriving actual heart tissue of oxygen—through decreased blood flow—can cause irreparable damage. The human genome houses ALDH2, a gene that encodes the heart-protective metabolic enzyme aldehyde dehydrogenase 2. But ~8% of the human population carries an inactivating gene polymorphism (ALDH2*2) that has been linked to enhanced severity of damage from cardiac ischemia—a shortage in the heart’s oxygen supply—and an increased risk of coronary artery disease (CAD). Now, Ebert et al. investigate the mechanisms underlying these ALDH2*2-associated maladies using a human cellular model of the ALDH2*2 genotype made with induced pluripotent stem cell–derived cardiomyocytes generated from patient fibroblasts. The authors found that ALDH2 regulated cell survival by modulating oxidative stress, a circuit that was dysfunctional in ALDH2*2 cells. This aberration induced cell cycle arrest and enhanced apoptosis in cardiomyocytes after ischemic insult, illuminating a new function for ALDH2 in cell survival decisions. Such mechanistic insights may spur the development of new diagnostic methods for and improved risk management of CAD as well as genotype-specific cardiac therapies. Now, if we can only find a cure for the poetic broken heart…. Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies.


Circulation | 2015

Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes After Acute Myocardial Infarction

Sang Ging Ong; Bruno C. Huber; Won Hee Lee; Kazuki Kodo; Antje D. Ebert; Yu Ma; Patricia K. Nguyen; Sebastian Diecke; Wen Yi Chen; Joseph C. Wu

Background— Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction. Methods and Results— Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule–based protocol. Troponin+ iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×106 iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment. Conclusions— Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.


Stem Cell Reviews and Reports | 2015

Improved Approach for Chondrogenic Differentiation of Human Induced Pluripotent Stem Cells

Hossein Nejadnik; Sebastian Diecke; Olga D. Lenkov; Fanny Chapelin; Jessica Donig; Xinming Tong; Nikita Derugin; Ray Chun-Fai Chan; Amitabh Gaur; Fan Yang; Joseph C. Wu; Heike E. Daldrup-Link

Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for hyaline cartilage regeneration. However, current approaches for chondrogenic differentiation of hiPSCs are complicated and inefficient primarily due to intermediate embryoid body formation, which is required to generate endodermal, ectodermal, and mesodermal cell lineages. We report a new, straightforward and highly efficient approach for chondrogenic differentiation of hiPSCs, which avoids embryoid body formation. We differentiated hiPSCs directly into mesenchymal stem /stromal cells (MSC) and chondrocytes. hiPSC-MSC-derived chondrocytes showed significantly increased Col2A1, GAG, and SOX9 gene expression compared to hiPSC-MSCs. Following transplantation of hiPSC-MSC and hiPSC-MSC-derived chondrocytes into osteochondral defects of arthritic joints of athymic rats, magnetic resonance imaging studies showed gradual engraftment, and histological correlations demonstrated hyaline cartilage matrix production. Results present an efficient and clinically translatable approach for cartilage tissue regeneration via patient-derived hiPSCs, which could improve cartilage regeneration outcomes in arthritic joints.


Stem Cells | 2013

Costimulation-adhesion blockade is superior to cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation.

Bruno C. Huber; Julia D. Ransohoff; Katherine J. Ransohoff; Johannes Riegler; Antje D. Ebert; Kazuki Kodo; Yongquan Gong; Veronica Sanchez-Freire; Devaveena Dey; Nigel G. Kooreman; Sebastian Diecke; Wendy Y. Zhang; Justin I. Odegaard; Shijun Hu; Joseph D. Gold; Robert C. Robbins; Joseph C. Wu

Rationale: Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. Objective: To test the hypothesis that a short‐course, dual‐agent regimen of two costimulation‐adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. Methods and Results: We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein, and differentiated these cells to endothelial cells (hESC‐ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation‐adhesion therapy resulted in superior hESC‐EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation‐adhesion therapy also promoted robust hESC‐EC and hESC‐derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC‐EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging. Mechanistically, costimulation‐adhesion therapy is associated with systemic and intragraft upregulation of T‐cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile. Conclusions: Costimulation‐adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post‐transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation‐adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3‐dependent mechanism. Stem Cells 2013;31:2354–2363


Embo Molecular Medicine | 2015

Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?

Antje D. Ebert; Sebastian Diecke; Ian Y. Chen; Joseph C. Wu

Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) and induced cardiomyocytes (iCMs). The application of these patient‐specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease‐specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.

Collaboration


Dive into the Sebastian Diecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge