Sebastian Gaiser
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Gaiser.
Journal of Clinical Investigation | 2012
Jaroslaw Daniluk; Yan Liu; Defeng Deng; Jun Chu; Haojie Huang; Sebastian Gaiser; Zobeida Cruz-Monserrate; Huamin Wang; Baoan Ji; Craig D. Logsdon
Genetic mutations that give rise to active mutant forms of Ras are oncogenic and found in several types of tumor. However, such mutations are not clear biomarkers for disease, since they are frequently detected in healthy individuals. Instead, it has become clear that elevated levels of Ras activity are critical for Ras-induced tumorigenesis. However, the mechanisms underlying the production of pathological levels of Ras activity are unclear. Here, we show that in the presence of oncogenic Ras, inflammatory stimuli initiate a positive feedback loop involving NF-κB that further amplifies Ras activity to pathological levels. Stimulation of Ras signaling by typical inflammatory stimuli was transient and had no long-term sequelae in wild-type mice. In contrast, these stimuli generated prolonged Ras signaling and led to chronic inflammation and precancerous pancreatic lesions (PanINs) in mice expressing physiological levels of oncogenic K-Ras. These effects of inflammatory stimuli were disrupted by deletion of inhibitor of NF-κB kinase 2 (IKK2) or inhibition of Cox-2. Likewise, expression of active IKK2 or Cox-2 or treatment with LPS generated chronic inflammation and PanINs only in mice expressing oncogenic K-Ras. The data support the hypothesis that in the presence of oncogenic Ras, inflammatory stimuli trigger an NF-κB-mediated positive feedback mechanism involving Cox-2 that amplifies Ras activity to pathological levels. Because a large proportion of the adult human population possesses Ras mutations in tissues including colon, pancreas, and lung, disruption of this positive feedback loop may be an important strategy for cancer prevention.
Gastroenterology | 2009
Baoan Ji; Lilian Tsou; Huamin Wang; Sebastian Gaiser; David Z. Chang; Jaroslaw Daniluk; Yan Bi; Tobias Grote; Daniel S. Longnecker; Craig D. Logsdon
BACKGROUND & AIMS Differentiated pancreatic acinar cells expressing endogenous levels of mutant K-Ras do not spontaneously develop pancreatic ductal adenocarcinoma (PDAC). However, we hypothesized that acinar cells would develop PDAC in the presence of Ras activity levels mimicking those of human tumor cells. METHODS We measured Ras activity in PDAC cells from mice and humans using a Raf pull-down assay. We compared the effects of acinar cell expression of mutant K-Ras at endogenous and elevated levels on Ras activity and on the development of PDAC. RESULTS Ras activity was greatly elevated in PDAC cells compared with nontransformed cells expressing endogenous levels of mutant K-Ras. Expression of endogenous levels of mutant K-Ras in differentiated acinar cells resulted in moderately elevated Ras activity and in sparse murine pancreatic intraepithelial neoplasias (mPanINs) that did not spontaneously advance to PDAC unless the tumor suppressor p53 was simultaneously deleted. In contrast, expression of mutant K-Ras at higher levels generated Ras activity equal to that in PDAC. High Ras activity mimicking levels in PDAC led to acinar cell senescence and generated inflammation and fibrosis resembling the histologic features of chronic pancreatitis. With higher Ras activity in acinar cells, abundant mPanINs formed and spontaneously progressed to both cystic papillary carcinoma and metastatic PDAC. CONCLUSIONS There is an important relationship between Ras activity levels and the progression of PDAC. Sufficient Ras activity in pancreatic acinar induces several important pancreatic disease manifestations not previously reported and supports a potential direct linkage between chronic pancreatitis, cystic papillary carcinoma, and PDAC.
Gastroenterology | 2013
Haojie Huang; Yan Liu; Jaroslaw Daniluk; Sebastian Gaiser; Jun Chu; Huamin Wang; Zhao–Shen Li; Craig D. Logsdon; Baoan Ji
BACKGROUND & AIMS Nuclear factor-κB (NF-κB) is activated during early stages of pancreatitis. This transcription factor regulates genes that control many cell activities, including inflammation and survival. There is evidence that activation of NF-κB protects against pancreatitis, and, in other cases, that it promotes this disease. We compared the effects of NF-κB in different mouse models of pancreatitis to understand these complications. METHODS To model constitutive activation of NF-κB, we expressed a transgene that encodes its p65 subunit or the inhibitor of κB kinase (IKK)2 in pancreatic acinar cells of mice. We analyzed effects on pancreatic tissues and levels of NF-κB target genes in these mice and compared them with mice that did not express transgenic p65 or IKK2 (controls). RESULTS Transgenic expression of p65 led to compensatory expression of the inhibitory subunit IKB-α and, therefore, no clear phenotype. However, p65 transgenic mice given injections of cerulein, to induce acute pancreatitis, had higher levels of NF-κB activity in acinar cells, greater levels of inflammation, and more severe outcomes than control mice. In contrast, constitutive expression of IKK2 directly increased the activity of NF-κB in acinar cells and induced pancreatitis. Prolonged activity of IKK2 (3 months) resulted in activation of stellate cells, loss of acinar cells, and fibrosis, which are characteristics of chronic pancreatitis. Co-expression of IKK2 and p65 greatly increased the expression of inflammatory mediators and the severity of pancreatitis, compared with control mice. CONCLUSIONS The level of NF-κB activation correlates with the severity of acute pancreatitis in mice. Longer periods of activation (3 months) lead to chronic pancreatitis. These findings indicate that strategies to inactivate NF-κB might be used to treat patients with acute or chronic pancreatitis.
Gut | 2011
Sebastian Gaiser; Jaroslaw Daniluk; Yan Liu; Lilian Tsou; Jun Chu; Woojin Lee; Daniel S. Longnecker; Craig D. Logsdon; Baoan Ji
Background and aims Premature intra-acinar activation of trypsinogen is widely considered key for both the initiation of acute pancreatitis and the development of chronic pancreatitis. However, the biological consequences of intracellular trypsinogen activation have not been directly examined. To do so, a new mouse model was developed. Methods Mice were engineered to conditionally express an endogenously activated trypsinogen within pancreatic acinar cells (PACE-trypon). Hallmarks of pancreatitis were determined and findings were correlated to the level (zygosity) and extent (temporal and spatial) of conditional PACE-trypon expression. Furthermore, the impact of acinar cell death in PACE-trypon mice was assessed and compared with a model of selective diphtheria toxin (DT)-mediated induction of acinar apoptosis. Results Initiation of acute pancreatitis was observed with high (homozygous), but not low (heterozygous) levels of PACE-trypon expression. Subtotal (maximal-rapid induction) but not limited (gradual-repetitive induction) conditional PACE-trypon expression was associated with systemic complications and mortality. Rapid caspase-3 activation and apoptosis with delayed necrosis was observed, and loss of acinar cells led to replacement with fatty tissue. Chronic inflammation or fibrosis did not develop. Selective depletion of pancreatic acinar cells by apoptosis using DT evoked similar consequences. Conclusions Intra-acinar activation of trypsinogen is sufficient to initiate acute pancreatitis. However, the primary response to intracellular trypsin activity is rapid induction of acinar cell death via apoptosis which facilitates resolution of the acute inflammation rather than causing chronic pancreatitis. This novel model provides a powerful tool to improve our understanding of basic mechanisms occurring during pancreatitis.
Journal of Biological Chemistry | 2009
Baoan Ji; Sebastian Gaiser; Xueqing Chen; Sthephen A. Ernst; Craig D. Logsdon
Premature intracellular activation of the digestive enzyme trypsinogen is considered to be the initiating event in pancreatitis. However, the direct consequences of intracellular trypsin activity have not previously been examined. In the current study, a mutant trypsinogen (paired basic amino acid cleaving enzyme (PACE)-trypsinogen), which is activated intracellularly by the endogenous protease PACE, was developed. This new construct allowed for the first time direct examination of the effects of intracellular trypsin on pancreatic acinar cells. We found that PACE-trypsinogen was expressed in the secretory pathway and was activated within acinar cells. Expression of PACE-trypsinogen induced apoptosis of HEK293 cells and pancreatic acinar cells, as indicated by histology, DNA laddering, PARP cleavage, and caspase-3 activation. Cell death was blocked by the trypsin inhibitor Pefabloc but not by the pancaspase inhibitor benzyloxycarbonyl-VAD, indicating that caspase-independent pathways were also involved. However, intracellular trypsin had no significant effect on the activity of the proinflammatory transcription factor NF-κB. In contrast, extracellular trypsin caused cell damage and dramatically increased NF-κB activity. These data indicate that localization of active trypsin determines its effects on pancreatic acinar cells. This new model will greatly improve our understanding of the role of active trypsin in pancreatitis and its associated inflammatory response.
Genesis | 2008
Baoan Ji; J. Song; Lilian Tsou; Yan Bi; Sebastian Gaiser; Richard M. Mortensen; Craig D. Logsdon
Pancreatic acinar cells are critical in gastrointestinal physiology and pancreatitis and may be involved in pancreatic cancer. Previously, a short rat pancreatic elastase promoter has been widely utilized to control acinar cell transgene expression. However, this partial sequence does not confer robust and stable expression. In this study, we tested the hypothesis that a transgene employing bacterial‐artificial‐chromosome (BAC) technology to express a tamoxifen‐regulated Cre recombinase from a full‐length mouse elastase gene (BAC‐Ela‐CreErT) would be more robust and stable. When founders were crossed with Rosa26 reporter mice nearly 100% of acini expressed β‐galactosidase after tamoxifen treatment. The expression was specific for pancreatic acinar cells and these characteristics have remained stable for 2 years. However, because of high levels of expression in differentiated acinar cells, this construct is tamoxifen independent in ∼50% of adult acinar cells. This model of pancreatic acinar specific Cre expression is a powerful tool for future transgenic and knockout studies. genesis 46:390–395, 2008.
BMC Gastroenterology | 2006
Lena Selig; Ulrich Sack; Sebastian Gaiser; Günter Klöppel; Vuk Savkovic; Joachim Mössner; Volker Keim; Hans Bödeker
BackgroundThe R122H mutation of the cationic trypsinogen was found in patients with hereditary pancreatitis. A transgenic animal carrying this mutation could be useful as a genetic model system of pancreatitis.MethodsMice transgenic for the human R122H cationic trypsinogen were generated using the -205 fragment of the rat elastase promoter. The presence of the transgene was assayed in the DNA, in pancreatic mRNA and in zymogen granule lysates. Serum levels of amylase, lipase and cytokines (MCP-1, IL-6) were monitored and the histological appearance of the tissue was investigated. Pancreatitis was induced by 7 hourly injections of 50 μg/kg cerulein. The procedure was repeated twice weekly for 10 consecutive weeks. The animals were sacrificed 24 (n = 8) and 48 hours (n = 8) after the first injection and at the end of the whole treatment (n = 7).ResultsThe transgene was detected at the genomic level and in pancreatic mRNA. The corresponding protein was found in low amounts in zymogen granule lysates. R122H mice showed elevated pancreatic lipase, but there was no spontaneous development of pancreatitis within 18 months. After induction of pancreatitis, levels of lipase (after 24 hours) and amylase (after 48 hours) were higher in R122H mice compared to controls. Repeated treatment with cerulein resulted in a slightly more severe pancreatitis in R122H animals. Amylase, lipase, and the cytokine levels were similar to controls.ConclusionThe R122H transgenic mouse failed to develop a spontaneous pancreatitis but a repeatedly provoked cerulein-induced pancreatitis led to a slightly more severe pancreatitis. The rather small difference in comparison to controls could be due to the low expression of the transgene in the mouse pancreas.
Biochemical and Biophysical Research Communications | 2007
Sanga Sadat; Sebastian Gehmert; Yao-Hua Song; Yasheng Yen; Xiaowen Bai; Sebastian Gaiser; Helmut U. Klein; Eckhard Alt
Biochemical and Biophysical Research Communications | 2007
Vuk Savkovic; Helen Gantzer; Ulrich Reiser; Lena Selig; Sebastian Gaiser; Ulrich Sack; Günter Klöppel; Joachim Mössner; Volker Keim; Friedemann Horn; Hans Bödeker
Biochemical and Biophysical Research Communications | 2005
Sebastian Gaiser; Astrid Ahler; Felix Gundling; Marie-Luise Kruse; Vuk Savkovic; Lena Selig; Niels Teich; Richard Tomasini; Jean-Charles Dagorn; Joachim Mössner; Volker Keim; Hans Bödeker