Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Heinzel is active.

Publication


Featured researches published by Sebastian Heinzel.


NeuroImage | 2007

Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: A parametric validation study

Michael M. Plichta; Sebastian Heinzel; A.-C. Ehlis; Paul Pauli; Andreas J. Fallgatter

To validate the usefulness of a model-based analysis approach according to the general linear model (GLM) for functional near-infrared spectroscopy (fNIRS) data, a rapid event-related paradigm with an unpredictable stimulus sequence was applied to 15 healthy subjects. A parametric design was chosen wherein four differently graded contrasts of a flickering checkerboard were presented, allowing directed hypotheses about the rank order of the evoked hemodynamic response amplitudes. The results indicate the validity of amplitude estimation by three main findings (a) the GLM approach for fNIRS data is capable to identify human brain activation in the visual cortex with inter-stimulus intervals of 4-9 s (6.5 s average) whereas in non-visual areas no systematic activation was detectable; (b) the different contrast level intensities lead to the hypothesized rank order of the GLM amplitude parameters: visual cortex activation evoked by highest contrast>moderate contrast>lowest contrast>no stimulation; (c) analysis of null-events (no stimulation) did not produce any significant activation in the visual cortex or in other brain areas. We conclude that a model-based GLM approach delivers valid fNIRS amplitude estimations and enables the analysis of rapid event-related fNIRS data series, which is highly relevant in particular for cognitive fNIRS studies.


PLOS ONE | 2011

Simulation of Near-Infrared Light Absorption Considering Individual Head and Prefrontal Cortex Anatomy: Implications for Optical Neuroimaging

Florian B. Haeussinger; Sebastian Heinzel; Tim Hahn; Martin Schecklmann; Ann-Christine Ehlis; Andreas J. Fallgatter

Functional near-infrared spectroscopy (fNIRS) is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: years), we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD), frontal sinus volume as well as sulcal morphology on gray matter volumes () traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of considering the deepest of light. Of the detected photon packages scalp and bone absorbed and absorbed of the energy. The mean volume was negatively correlated () with the SCD and frontal sinus volume () and was reduced by in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD () and the traversed frontal sinus volume (). Sulcal morphology had no significant impact on . Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance.


Molecular Psychiatry | 2011

Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree

Klaus-Peter Lesch; S. Selch; Tobias J. Renner; Christian Jacob; T. T. Nguyen; Tim Hahn; Marcel Romanos; Susanne Walitza; Sarah A. Shoichet; A. Dempfle; Monika Heine; Andrea Boreatti-Hümmer; Jasmin Romanos; S. Gross-Lesch; H. Zerlaut; T. Wultsch; Sebastian Heinzel; M. Fassnacht; Andreas J. Fallgatter; B. Allolio; H. Schäfer; Andreas Warnke; Andreas Reif; Hans-Hilger Ropers; Reinhard Ullmann

Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental syndrome characterized by hyperactivity, inattention and increased impulsivity. To detect micro-deletions and micro-duplications that may have a role in the pathogenesis of ADHD, we carried out a genome-wide screen for copy number variations (CNVs) in a cohort of 99 children and adolescents with severe ADHD. Using high-resolution array comparative genomic hybridization (aCGH), a total of 17 potentially syndrome-associated CNVs were identified. The aberrations comprise 4 deletions and 13 duplications with approximate sizes ranging from 110 kb to 3 Mb. Two CNVs occurred de novo and nine were inherited from a parent with ADHD, whereas five are transmitted by an unaffected parent. Candidates include genes expressing acetylcholine-metabolizing butyrylcholinesterase (BCHE), contained in a de novo chromosome 3q26.1 deletion, and a brain-specific pleckstrin homology domain-containing protein (PLEKHB1), with an established function in primary sensory neurons, in two siblings carrying a 11q13.4 duplication inherited from their affected mother. Other genes potentially influencing ADHD-related psychopathology and involved in aberrations inherited from affected parents are the genes for the mitochondrial NADH dehydrogenase 1 α subcomplex assembly factor 2 (NDUFAF2), the brain-specific phosphodiesterase 4D isoform 6 (PDE4D6) and the neuronal glucose transporter 3 (SLC2A3). The gene encoding neuropeptide Y (NPY) was included in a ∼3 Mb duplication on chromosome 7p15.2-15.3, and investigation of additional family members showed a nominally significant association of this 7p15 duplication with increased NPY plasma concentrations (empirical family-based association test, P=0.023). Lower activation of the left ventral striatum and left posterior insula during anticipation of large rewards or losses elicited by functional magnetic resonance imaging links gene dose-dependent increases in NPY to reward and emotion processing in duplication carriers. These findings implicate CNVs of behaviour-related genes in the pathogenesis of ADHD and are consistent with the notion that both frequent and rare variants influence the development of this common multifactorial syndrome.


NeuroImage | 2009

Neural response to reward anticipation is modulated by Gray's impulsivity.

Tim Hahn; Thomas Dresler; A.-C. Ehlis; Michael M. Plichta; Sebastian Heinzel; Thomas Polak; Klaus-Peter Lesch; Felix A. Breuer; Peter M. Jakob; Andreas J. Fallgatter

According to the Reinforcement Sensitivity Theory (RST), Grays dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Grays impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Grays impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Grays dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health.


Neurobiology of Aging | 2013

Aging-related cortical reorganization of verbal fluency processing: a functional near-infrared spectroscopy study

Sebastian Heinzel; Florian G. Metzger; Ann-Christine Ehlis; Robert Korell; Ahmed Alboji; Florian B. Haeussinger; Katja Hagen; Walter Maetzler; Gerhard W. Eschweiler; Daniela Berg; Andreas J. Fallgatter

While progressive neurocognitive impairments are associated with aging and Alzheimers disease (AD), cortical reorganization might delay difficulties in effortful word retrieval, which represent one of the earliest cognitive signs of AD. Using functional near-infrared spectroscopy (fNIRS), we investigated cortical hemodynamic responses elicited by phonological and semantic verbal fluency in non-demented, healthy subjects (n = 325; age: 51-82 years). Age predicted bilaterally reduced inferior frontal junction (IFJ) and increased middle frontal and supramarginal gyri activity in both task conditions using multiple regressions. Compared with age the years of education as well as sex (IFJ activation in females > males) partly predicted opposite effects on activation, while task performance was not significant predictor. All predictors showed small effect sizes. IFJ activation was more pronounced during phonological compared with semantic fluency, and higher in the left hemisphere. Age only marginally predicted relative lateralization. Middle frontal and supramarginal gyri activity may compensate for an aging-related decrease in IFJ recruitment during verbal fluency. Longitudinal observations will further investigate these neural changes regarding an early AD prediction, while individuals are still cognitively healthy.


Human Brain Mapping | 2011

Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype

Tim Hahn; Sebastian Heinzel; Thomas Dresler; Michael M. Plichta; Tobias J. Renner; Falko Markulin; Peter M. Jakob; Klaus-Peter Lesch; Andreas J. Fallgatter

The impact of individual differences on human reward processing has been a focus of research in recent years, particularly, as they are associated with a variety of neuropsychiatric diseases including addiction and attention‐deficit/hyperactivity disorder. Studies exploring the neural basis of individual differences in reward sensitivity have consistently implicated the ventral striatum (VS) as a core component of the human reward system. However, the mechanisms of dopaminergic neurotransmission underlying ventral striatal activation as well as trait reward sensitivity remain speculative. We addressed this issue by investigating the triadic interplay between VS reactivity during reward anticipation using functional magnetic resonance imaging, trait reward sensitivity, and dopamine (DA) transporter genotype (40‐bp 3′VNTR of DAT, SLC6A3) affecting synaptic DA neurotransmission. Our results show that DAT variation moderates the association between VS‐reactivity and trait reward sensitivity. Specifically, homozygote carriers of the DAT 10‐repeat allele exhibit a strong positive correlation between reward sensitivity and reward‐related VS activity whereas this relationship is absent in the DAT 9‐repeat allele carriers. We discuss the possibility that this moderation of VS‐trait relation might arise from DAT‐dependent differences in DA availability affecting synaptic plasticity within the VS. Generally, studying the impact of dopaminergic gene variations on the relation between reward‐related brain activity and trait reward sensitivity might facilitate the investigation of complex mechanisms underlying disorders linked to dysregulation of DA neurotransmission. Hum Brain Mapp, 2010.


NeuroImage | 2014

Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.

Florian B. Haeussinger; Thomas Dresler; Sebastian Heinzel; Martin Schecklmann; Andreas J. Fallgatter; Ann-Christine Ehlis

Functional near-infrared spectroscopy (fNIRS) is an optical neuroimaging method that detects temporal concentration changes of oxygenated and deoxygenated hemoglobin within the cortex, so that neural activation can be inferred. However, even though fNIRS is a very practical and well-tolerated method with several advantages particularly in methodically challenging measurement situations (e.g., during tasks involving movement or open speech), it has been shown to be confounded by systemic compounds of non-cerebral, extra-cranial origin (e.g. changes in blood pressure, heart rate). Especially event-related signal patterns induced by dilation or constriction of superficial forehead and temple veins impair the detection of frontal brain activation elicited by cognitive tasks. To further investigate this phenomenon, we conducted a simultaneous fNIRS-fMRI study applying a working memory paradigm (n-back). Extra-cranial signals were obtained by extracting the BOLD signal from fMRI voxels within the skin. To develop a filter method that corrects for extra-cranial skin blood flow, particularly intended for fNIRS data sets recorded by widely used continuous wave systems with fixed optode distances, we identified channels over the forehead with probable major extra-cranial signal contributions. The averaged signal from these channels was then subtracted from all fNIRS channels of the probe set. Additionally, the data were corrected for motion and non-evoked systemic artifacts. Applying these filters, we can show that measuring brain activation in frontal brain areas with fNIRS was substantially improved. The resulting signal resembled the fMRI parameters more closely than before the correction. Future fNIRS studies measuring functional brain activation in the forehead region need to consider the use of different filter options to correct for interfering extra-cranial signals.


NeuroImage | 2014

Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects

Katja Hagen; Ann-Christine Ehlis; Florian B. Haeussinger; Sebastian Heinzel; Thomas Dresler; Laura D. Mueller; Martin J. Herrmann; Andreas J. Fallgatter; Florian G. Metzger

Cognitive decline is very common in age and particularly in subjects with neurodegenerative conditions. Besides memory and language, executive functions are very often affected in elderly and patients with Alzheimers disease or Parkinsons disease. However, the neural alterations associated with these executive deficits are still not fully understood. Therefore, we measured cortical activation using functional near-infrared spectroscopy (fNIRS) in 16 healthy elderly subjects (50-75 years) performing the Trail Making Test (TMT), a widely used neuropsychological instrument measuring executive function. In line with previous studies focusing on younger subjects, the results showed frontal activation during the TMT A and the TMT B in the dorsolateral prefrontal cortex, the frontopolar area and also Brocas area. Furthermore, significant activation in the left motor, somatosensory cortices and somatosensory association cortices was demonstrated. Additionally, after a median split the differences between younger (<58 years) and older (>58 years) subjects were analyzed with the older subjects showing a less focused prefrontal activation. Altogether, fNIRS was found to be suitable to detect cortical activation in elderly subjects during performance of the TMT as well as aging-related differences in prefrontal activation topography. These neural correlates of executive functions should be further investigated as a potential prodromal neural marker of executive deficits and neurodegenerative processes.


Neuropsychopharmacology | 2010

Dopamine transporter (SLC6A3) genotype impacts neurophysiological correlates of cognitive response control in an adult sample of patients with ADHD.

Thomas Dresler; Ann-Christine Ehlis; Sebastian Heinzel; Tobias J. Renner; Andreas Reif; Christina G. Baehne; Monika Heine; Andrea Boreatti-Hümmer; Christian Jacob; Klaus-Peter Lesch; Andreas J. Fallgatter

Studies provide ample evidence for a dysfunction in dopaminergic neurotransmission in Attention-Deficit/Hyperactivity Disorder (ADHD). In that respect, a common variable number of tandem repeats (VNTR) polymorphism in the 3′ untranslated region (UTR) of the dopamine transporter gene (SLC6A3) has been repeatedly associated with the disorder. Here, we examined the influence of the common 9- and 10-repeat alleles of SLC6A3 on prefrontal brain functioning and cognitive response control in a large sample of adult ADHD patients (n=161) and healthy controls (n=109). To this end, we inspected a neurophysiological marker of cognitive response control (NoGo anteriorization, NGA) elicited by means of a Go-NoGo task (continuous performance test, CPT). Within the group of ADHD patients, nine-repeat allele carriers showed significantly reduced NGA, whereas no influence of SLC6A3 genotype was observed in the control group. In contrast to previous association studies of children, the nine-repeat—not the 10-repeat—allele was associated with functional impairments in our sample of adult ADHD patients. Our findings confirm a significant effect of the SLC6A3 genotype on the neurophysiological correlates of cognitive response control in ADHD, and indicate that still to-be-identified age-related factors are important variables modulating the effect of genetic factors on endophenotypes.


Cerebral Cortex | 2011

Neurovascular Coupling in the Human Visual Cortex Is Modulated by Cyclooxygenase-1 (COX-1) Gene Variant

Tim Hahn; Sebastian Heinzel; Michael M. Plichta; Andreas Reif; Klaus-Peter Lesch; Andreas J. Fallgatter

Functional hyperemia, the brains capability to alter microvascular blood flow in response to the metabolic demands of active neurons, is essential for sustained mammalian brain function. Pharmacological studies in mice suggest neurovascular coupling to centrally involve cyclooxygenase-1 (COX-1) metabolites such as prostaglandins. In humans, however, genetic variation of the COX-1 gene impacting the coupling of neural activity to hemodynamic responses (HRs) has not been investigated yet. In this study, we determined whether COX-1 genotype-dependent enzymatic function impacts HRs in humans. Specifically, using a double-blind Imaging Genetics approach utilizing functional near-infrared spectroscopy, we measured HRs following visual checkerboard stimulation. COX-1 genotype (L237M, rs5789)-dependent decrease in enzymatic function in heterozygous L/M carriers is associated with a 42% reduction of the HR amplitude. This finding is discussed in the context of potentially imbalanced neurovascular mechanisms involving arachidonic acid, which underlie vasodilatory and vasoconstrictive forces of functional hemodynamics. Generally, these findings might help to improve our understanding of pathologies such as stroke and Alzheimers disease in which neurovascular coupling is altered. Additionally, our results may have important implications for functional brain imaging in which HRs are commonly used as a surrogate for neural activation.

Collaboration


Dive into the Sebastian Heinzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inga Liepelt-Scarfone

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge