Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Jaenicke is active.

Publication


Featured researches published by Sebastian Jaenicke.


PLOS Medicine | 2013

Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study

Andreas Roetzer; Roland Diel; Thomas A. Kohl; Christian Rückert; Ulrich Nübel; Jochen Blom; Thierry Wirth; Sebastian Jaenicke; Sieglinde Schuback; Sabine Rüsch-Gerdes; Philip Supply; Jörn Kalinowski; Stefan Niemann

In an outbreak investigation of Mycobacterium tuberculosis comparing whole genome sequencing (WGS) with traditional genotyping, Stefan Niemann and colleagues found that classical genotyping falsely clustered some strains, and WGS better reflected contact tracing.


Journal of Biotechnology | 2009

Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing

Magdalena Kröber; Thomas Bekel; Naryttza N. Diaz; Alexander Goesmann; Sebastian Jaenicke; Lutz Krause; Dimitri Miller; Kai J. Runte; Prisca Viehöver; Alfred Pühler; Andreas Schlüter

The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.


PLOS ONE | 2011

Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.

Sebastian Jaenicke; Christina Ander; Thomas Bekel; Regina Bisdorf; Marcus Dröge; Karl-Heinz Gartemann; Sebastian Jünemann; Olaf Kaiser; Lutz Krause; Felix Tille; Martha Zakrzewski; Alfred Pühler; Andreas Schlüter; Alexander Goesmann

Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roches GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.


Journal of Biotechnology | 2012

Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.

Martha Zakrzewski; Alexander Goesmann; Sebastian Jaenicke; Sebastian Jünemann; Felix Gregor Eikmeyer; Rafael Szczepanowski; Waleed Abu Al-Soud; Søren J. Sørensen; Alfred Pühler; Andreas Schlüter

Structural composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was recently analyzed by means of a metagenome sequencing approach. To determine the transcriptionally active part of the same biogas community and to identify key transcripts for the biogas production process, the metatranscriptome of the microorganisms was sequenced for the first time. The metatranscriptome sequence dataset generated on the Genome Sequencer FLX platform is represented by 484,920 sequence reads. Taxonomic profiling of the active part of the community by classification of 16S ribosomal sequence tags revealed that members of the Euryarchaeota and Firmicutes account for the dominant phyla. Only smaller fractions of the 16S ribosomal sequence tags were assigned to the phyla Bacteroidetes, Actinobacteria and Synergistetes. Among the mRNA-derived sequence tags from the metatranscriptome dataset, transcripts encoding enzymes involved in substrate hydrolysis, acidogenesis, acetate formation and methanogenesis could be identified. Transcripts for enzymes functioning in methanogenesis are among the most abundant mRNA tags indicating that the corresponding pathway is very active in the methanogenic sub-community. As a frame of reference for evaluation of metatranscriptome sequence data, the 16S rDNA-based taxonomic profile of the community was analyzed by means of high-throughput 16S rDNA amplicon sequencing. Processing of the obtained amplicon reads resulted in 18,598 high-quality 16S rDNA sequences covering the V3-V4 hypervariable region of the 16S rRNA gene. Comparison of the taxonomic profiles deduced from 16S rDNA amplicon sequences and the metatranscriptome dataset indicates a high transcriptional activity of archaeal species. Overall, it was shown that the most abundant species dominating the community also contributed the majority of the transcripts. In the future, key transcripts for the biogas production process will provide valuable markers for evaluation of the performance of biogas-producing microbial communities with the objective to optimize the biotechnology of this process.


Journal of Biotechnology | 2011

High-quality genome sequence of Pichia pastoris CBS7435.

Andreas Küberl; Jessica Schneider; Gerhard G. Thallinger; Ingund Anderl; Daniel Wibberg; Tanja Hajek; Sebastian Jaenicke; Karina Brinkrolf; Alexander Goesmann; Rafael Szczepanowski; Alfred Pühler; Helmut Schwab; Anton Glieder; Harald Pichler

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) CBS7435 is the parental strain of commonly used P. pastoris recombinant protein production hosts making it well suited for improving the understanding of associated genomic features. Here, we present a 9.35 Mbp high-quality genome sequence of P. pastoris CBS7435 established by a combination of 454 and Illumina sequencing. An automatic annotation of the genome sequence yielded 5007 protein-coding genes, 124 tRNAs and 29 rRNAs. Moreover, we report the complete DNA sequence of the first mitochondrial genome of a methylotrophic yeast. Fifteen genes encoding proteins, 2 rRNA and 25 tRNA loci were identified on the 35.7 kbp circular, mitochondrial DNA. Furthermore, the architecture of the putative alpha mating factor protein of P. pastoris CBS7435 turned out to be more complex than the corresponding protein of Saccharomyces cerevisiae.


Journal of Biotechnology | 2011

Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid

Daniel Wibberg; Jochen Blom; Sebastian Jaenicke; Florian Kollin; Oliver Rupp; Birgit E. Scharf; Susanne Schneiker-Bekel; Rafael Sczcepanowski; Alexander Goesmann; João C. Setubal; Rüdiger Schmitt; Alfred Pühler; Andreas Schlüter

Agrobacterium sp. H13-3, formerly known as Rhizobium lupini H13-3, is a soil bacterium that was isolated from the rhizosphere of Lupinus luteus. The isolate has been established as a model system for studying novel features of flagellum structure, motility and chemotaxis within the family Rhizobiaceae. The complete genome sequence of Agrobacterium sp. H13-3 has been established and the genome structure and phylogenetic assignment of the organism was analysed. For de novo sequencing of the Agrobacterium sp. H13-3 genome, a combined strategy comprising 454-pyrosequencing on the Genome Sequencer FLX platform and PCR-based amplicon sequencing for gap closure was applied. The finished genome consists of three replicons and comprises 5,573,770 bases. Based on phylogenetic analyses, the isolate could be assigned to the genus Agrobacterium biovar I and represents a genomic species G1 strain within this biovariety. The highly conserved circular chromosome (2.82 Mb) of Agrobacterium sp. H13-3 mainly encodes housekeeping functions characteristic for an aerobic, heterotrophic bacterium. Agrobacterium sp. H13-3 is a motile bacterium driven by the rotation of several complex flagella. Its behaviour towards external stimuli is regulated by a large chemotaxis regulon and a total of 17 chemoreceptors. Comparable to the genome of Agrobacterium tumefaciens C58, Agrobacterium sp. H13-3 possesses a linear chromosome (2.15 Mb) that is related to its reference replicon and features chromosomal and plasmid-like properties. The accessory plasmid pAspH13-3a (0.6 Mb) is only distantly related to the plasmid pAtC58 of A. tumefaciens C58 and shows a mosaic structure. A tumor-inducing Ti-plasmid is missing in the sequenced strain H13-3 indicating that it is a non-virulent isolate.


Journal of Bacteriology | 2012

Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia

Eva Trost; Jochen Blom; Siomar de Castro Soares; I-Hsiu Huang; Arwa Al-Dilaimi; Jasmin Schröder; Sebastian Jaenicke; Fernanda Alves Dorella; Flávia Souza Rocha; Anderson Miyoshi; Vasco Azevedo; Maria Paula Cruz Schneider; Artur Silva; Thereza Cristina Ferreira Camello; Priscila Soares Sabbadini; Cíntia Silva Santos; Louisy Sanches dos Santos; Raphael Hirata; Ana Luiza Mattos-Guaraldi; Androulla Efstratiou; Michael P. Schmitt; Hung Ton-That; Andreas Tauch

Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.


Bioinformatics | 2011

Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming

Jochen Blom; Tobias Jakobi; Daniel Doppmeier; Sebastian Jaenicke; Jörn Kalinowski; Jens Stoye; Alexander Goesmann

MOTIVATION The introduction of next-generation sequencing techniques and especially the high-throughput systems Solexa (Illumina Inc.) and SOLiD (ABI) made the mapping of short reads to reference sequences a standard application in modern bioinformatics. Short-read alignment is needed for reference based re-sequencing of complete genomes as well as for gene expression analysis based on transcriptome sequencing. Several approaches were developed during the last years allowing for a fast alignment of short sequences to a given template. Methods available to date use heuristic techniques to gain a speedup of the alignments, thereby missing possible alignment positions. Furthermore, most approaches return only one best hit for every query sequence, thus losing the potentially valuable information of alternative alignment positions with identical scores. RESULTS We developed SARUMAN (Semiglobal Alignment of short Reads Using CUDA and NeedleMAN-Wunsch), a mapping approach that returns all possible alignment positions of a read in a reference sequence under a given error threshold, together with one optimal alignment for each of these positions. Alignments are computed in parallel on graphics hardware, facilitating an considerable speedup of this normally time-consuming step. Combining our filter algorithm with CUDA-accelerated alignments, we were able to align reads to microbial genomes in time comparable or even faster than all published approaches, while still providing an exact, complete and optimal result. At the same time, SARUMAN runs on every standard Linux PC with a CUDA-compatible graphics accelerator. AVAILABILITY http://www.cebitec.uni-bielefeld.de/brf/saruman/saruman.html.


Biotechnology for Biofuels | 2015

Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions

Yvonne Stolze; Martha Zakrzewski; Irena Maus; Felix Gregor Eikmeyer; Sebastian Jaenicke; Nils Rottmann; Clemens Siebner; Alfred Pühler; Andreas Schlüter

BackgroundDecomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools.ResultsHigh-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant methanogens within the dry fermentation process were highly related to the reference.ConclusionsAlthough process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.


BMC Genomics | 2010

The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

Eva Trost; Lisa Ott; Jessica Schneider; Jasmin Schröder; Sebastian Jaenicke; Alexander Goesmann; Peter Husemann; Jens Stoye; Fernanda Alves Dorella; Flávia Souza Rocha; Siomar de Castro Soares; Vívian D'Afonseca; Anderson Miyoshi; Jerónimo Saiz Ruiz; Artur Silva; Vasco Azevedo; Andreas Burkovski; Nicole Guiso; Olivier Join‐Lambert; Samer Kayal; Andreas Tauch

BackgroundCorynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated.ResultsSequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence.ConclusionThe functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host.

Collaboration


Dive into the Sebastian Jaenicke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge