Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Kehrloesser is active.

Publication


Featured researches published by Sebastian Kehrloesser.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer.

Paola Tucci; Massimiliano Agostini; Francesca Grespi; Elke K. Markert; Alessandro Terrinoni; Karen H. Vousden; Patricia A. J. Muller; Volker Dötsch; Sebastian Kehrloesser; Berna S. Sayan; Giuseppe Giaccone; Scott W. Lowe; Nozomi Takahashi; Peter Vandenabeele; Richard A. Knight; Arnold J. Levine; Gennaro Melino

p63 inhibits metastasis. Here, we show that p63 (both TAp63 and ΔNp63 isoforms) regulates expression of miR-205 in prostate cancer (PCa) cells, and miR-205 is essential for the inhibitory effects of p63 on markers of epithelial–mesenchymal transition (EMT), such as ZEB1 and vimentin. Correspondingly, the inhibitory effect of p63 on EMT markers and cell migration is reverted by anti–miR-205. p53 mutants inhibit expression of both p63 and miR-205, and the cell migration, in a cell line expressing endogenous mutated p53, can be abrogated by pre–miR-205 or silencing of mutated p53. In accordance with this in vitro data, ΔNp63 or miR-205 significantly inhibits the incidence of lung metastasis in vivo in a mouse tail vein model. Similarly, one or both components of the p63/miR-205 axis were absent in metastases or colonized lymph nodes in a set of 218 human prostate cancer samples. This was confirmed in an independent clinical data set of 281 patients. Loss of this axis was associated with higher Gleason scores, an increased likelihood of metastatic and infiltration events, and worse prognosis. These data suggest that p63/miR-205 may be a useful clinical predictor of metastatic behavior in prostate cancer.


Oncogene | 2015

Functional interplay between MDM2, p63/p73 and mutant p53

M H Stindt; Patricia A. J. Muller; R L Ludwig; Sebastian Kehrloesser; Volker Dötsch; Karen H. Vousden

Many cancers express mutant p53 proteins that have lost wild-type tumor suppressor activity and, in many cases, have acquired oncogenic functions that can contribute to tumor progression. These activities of mutant p53 reflect interactions with several other proteins, including the p53 family members p63 and p73. Mutations in p53 that affect protein conformation (such as R175H) show strong binding to p63 and p73, whereas p53 mutants that only mildly affect the conformation (such as R273H) bind less well. A previously described aggregation domain of mutant p53 is not required for p63 or p73 binding; indeed, mutations within this region lead to the acquisition of a mutant p53 phenotype—including a conformational shift, p63/p73 binding and the ability to promote invasion. The activity of wild-type p53 is regulated by an interaction with MDM2 and we have investigated the potential role of MDM2 in the mutant p53/p63/p73 interactions. Both mutant p53 and p73 bind MDM2 well, whereas p63 binds much more weakly. We found that MDM2 can inhibit p63 binding to p53R175H but enhances the weaker p53R273H/p73 interaction. These effects on the interactions are reflected in an ability of MDM2 to relieve the inhibition of p63 by p53R175H, but enhance the inhibition of p73 activity by p53R175H and R273H. We propose a model in which MDM2 competes with p63 for binding to p53R175H to restore p63 activity, but forms a trimeric complex with p73 and p53R273H to more strongly inhibit p73 function.


Cell Death & Differentiation | 2013

Analysis of the oligomeric state and transactivation potential of TAp73α

Laura M. Luh; Sebastian Kehrloesser; Gregor B. Deutsch; Jakob Gebel; Daniel Coutandin; Birgit Schäfer; Massimiliano Agostini; Gerry Melino; Volker Dötsch

The proteins p73 and p63 are members of the p53 protein family and are involved in important developmental processes. Their high sequence identity with the tumor suppressor p53 has suggested that they act as tumor suppressors as well. While p63 has a crucial role in the maintenance of epithelial stem cells and in the quality control of oocytes without a clear role as a tumor suppressor, p73′s tumor suppressor activity is well documented. In a recent study we have shown that the transcriptional activity of TAp63α, the isoform responsible for the quality control in oocytes, is regulated by its oligomeric state. The protein forms an inactive, dimeric and compact conformation in resting oocytes, while the detection of DNA damage leads to the formation of an active, tetrameric and open conformation. p73 shows a high sequence identity to p63, including those domains that are crucial in stabilizing its inactive state, thus suggesting that p73’s activity might be regulated by its oligomeric state as well. Here, we have investigated the oligomeric state of TAp73α by size exclusion chromatography and detailed domain interaction mapping, and show that in contrast to p63, TAp73α is a constitutive open tetramer. However, its transactivation potential depends on the cellular background and the promoter context. These results imply that the regulation of p73′s transcriptional activity might be more closely related to p53 than to p63.


eLife | 2016

Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level

Daniel Coutandin; Christian Osterburg; Ratnesh Kumar Srivastav; Manuela Sumyk; Sebastian Kehrloesser; Jakob Gebel; Marcel Tuppi; Jens Hannewald; Birgit Schäfer; E. Salah; Sebastian Mathea; Uta Müller-Kuller; James Doutch; Manuel Grez; Stefan Knapp; Volker Dötsch

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction. DOI: http://dx.doi.org/10.7554/eLife.13909.001


Cell Death & Differentiation | 2016

Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family

Sebastian Kehrloesser; Christian Osterburg; Marcel Tuppi; Birgit Schäfer; Karen H. Vousden; Volker Dötsch

The high percentage of p53 missense mutations found in cancer has been attributed to mutant acquired oncogenic gain of functions. Different aspects of these tumour-promoting functions are caused by repression of the transcriptional activity of p53 family members p63 and p73. A subset of frequently occurring p53 mutations results in thermodynamic destabilisation of the DNA-binding domain (DBD) rendering this domain highly unstable. These conformational mutants (such as p53R175H) have been suggested to directly bind to p63 and p73 via a co-aggregation mechanism mediated by their DBDs. Although the DBDs of p63 and p73 are in fact not sufficient for the interaction as shown previously, we demonstrate here that the transactivation inhibitory (TI) domains within the α-isoform-specific C termini of p63 and p73 are essential for binding to p53R175H. Hence, the closed dimeric conformation of inactive TAp63α that renders the TI domain inaccessible prevents efficient interaction. We further show that binding to p53R175H correlates with an intrinsic aggregation propensity of the tetrameric α-isoforms conferred by an openly accessible TI domain again supporting interaction via a co-aggregation mechanism.


Cold Spring Harbor Perspectives in Medicine | 2017

Structural Evolution and Dynamics of the p53 Proteins

Giovanni Chillemi; Sebastian Kehrloesser; Francesca Bernassola; Alessandro Desideri; Volker Dötsch; Arnold J. Levine; Gerry Melino

The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.


Journal of Cell Science | 2017

Control mechanisms in germ cells mediated by p53 family proteins

Jakob Gebel; Marcel Tuppi; Katharina Krauskopf; Daniel Coutandin; Susanne Pitzius; Sebastian Kehrloesser; Christian Osterburg; Volker Dötsch

ABSTRACT Germ cells are totipotent and, in principle, immortal as they are the source for new germ cells in each generation. This very special role requires tight quality control systems. The p53 protein family constitutes one of the most important quality surveillance systems in cells. Whereas p53 has become famous for its role as the guardian of the genome in its function as the most important somatic tumor suppressor, p63 has been nicknamed ‘guardian of the female germ line’. p63 is strongly expressed in resting oocytes and responsible for eliminating those that carry DNA double-strand breaks. The third family member, p73, acts later during oocyte and embryo development by ensuring correct assembly of the spindle assembly checkpoint. In addition to its role in the female germ line, p73 regulates cell-cell contacts between developing sperm cells and supporting somatic cells in the male germ line. Here, we review the involvement of the p53 protein family in the development of germ cells with a focus on quality control in the female germ line and discuss medical implications for cancer patients. Summary: Members of the p53 protein family have important roles in quality control processes within germ cells. We discuss these roles, in particular that of p63 and its molecular control mechanisms.


Nature Structural & Molecular Biology | 2018

Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63

Marcel Tuppi; Sebastian Kehrloesser; Daniel Coutandin; Valerio Rossi; Laura M. Luh; Alexander Strubel; Katharina Hötte; Meike Hoffmeister; Birgit Schäfer; Tiago De Oliveira; Florian R. Greten; Ernst H. K. Stelzer; Stefan Knapp; Massimo De Felici; Christian Behrends; Francesca Gioia Klinger; Volker Dötsch

The survival rate of cancer patients is steadily increasing, owing to more efficient therapies. Understanding the molecular mechanisms of chemotherapy-induced premature ovarian insufficiency (POI) could identify targets for prevention of POI. Loss of the primordial follicle reserve is the most important cause of POI, with the p53 family member p63 being responsible for DNA-damage-induced apoptosis of resting oocytes. Here, we provide the first detailed mechanistic insight into the activation of p63, a process that requires phosphorylation by both the priming kinase CHK2 and the executioner kinase CK1 in mouse primordial follicles. We further describe the structural changes induced by phosphorylation that enable p63 to adopt its active tetrameric conformation and demonstrate that previously discussed phosphorylation by c-Abl is not involved in this process. Inhibition of CK1 rescues primary oocytes from doxorubicin and cisplatin-induced apoptosis, thus uncovering a new target for the development of fertoprotective therapies.p63 activation in response to DNA damage leads to oocyte death and loss of fertility in women receiving chemotherapy. Activation requires sequential phosphorylation by CHK2 and CK1 kinases, and inhibition of these kinases rescues oocytes from apoptosis induced by chemotherapy.


EMBO Reports | 2017

Apoptosis inhibitor 5 is an endogenous inhibitor of caspase‐2

Gergely Imre; Jean Berthelet; Jan Heering; Sebastian Kehrloesser; Inga Maria Melzer; Byung Il Lee; Bernd Thiede; Volker Dötsch; Krishnaraj Rajalingam

Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase‐2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase‐2 also regulates autophagy, genomic stability and ageing. Caspase‐2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase‐2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase‐2 and impedes dimerization and activation of caspase‐2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase‐2. Depletion of endogenous API5 leads to an increase in caspase‐2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase‐2‐dependent apoptotic cell death. These results establish API5/AAC‐11 as a direct inhibitor of caspase‐2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.


Structure | 2018

Regulation of the Activity in the p53 Family Depends on the Organization of the Transactivation Domain

Katharina Krauskopf; Jakob Gebel; Sina Kazemi; Marcel Tuppi; Frank Löhr; Birgit Schäfer; Joachim Koch; Peter Güntert; Volker Dötsch; Sebastian Kehrloesser

Despite high sequence homology among the p53 family members, the regulation of their transactivation potential is based on strikingly different mechanisms. Previous studies revealed that the activity of TAp63α is regulated via an autoinhibitory mechanism that keeps inactive TAp63α in a dimeric conformation. While all p73 isoforms are constitutive tetramers, their basal activity is much lower compared with tetrameric TAp63. We show that the dimeric state of TAp63α not only reduces DNA binding affinity, but also suppresses interaction with the acetyltransferase p300. Exchange of the transactivation domains is sufficient to transfer the regulatory characteristics between p63 and p73. Structure determination of the transactivation domains of p63 and p73 in complex with the p300 Taz2 domain further revealed that, in contrast to p53 and p73, p63 has a single transactivation domain. Sequences essential for stabilizing the closed dimer of TAp63α have evolved into a second transactivation domain in p73 and p53.

Collaboration


Dive into the Sebastian Kehrloesser's collaboration.

Top Co-Authors

Avatar

Volker Dötsch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Birgit Schäfer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Marcel Tuppi

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jakob Gebel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Coutandin

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Güntert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Gerry Melino

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Frank Löhr

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge