Sebastian Kirsch
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Kirsch.
Journal of Hypertension | 2008
Jan H. Schefe; Christian Neumann; Matthias Goebel; Jan Danser; Sebastian Kirsch; Ronald Gust; Ulrich Kintscher; Thomas Unger; Heiko Funke-Kaiser
Objectives Inhibition of (pro)renin receptor activation was demonstrated to inhibit or even abolish the development of end-organ damage in animal models. The new renin inhibitor, aliskiren, markedly increases the plasma concentration of the (pro)renin receptor ligands prorenin and renin in patients. The effects of prorenin and of renin inhibitors on the signal transduction cascade of the (pro)renin receptor are currently unknown. Results Our results indicate that renin and prorenin were equally potent in (pro)renin receptor activation by decreasing (pro)renin receptor mRNA, increasing phosphatidylinositol-3 kinase p85α mRNA and augmenting viable cell number, respectively. These effects of renin and prorenin are both abolished using small-interfering RNA against the (pro)renin receptor or its adaptor promyelocytic zinc finger protein. The renin inhibitor aliskiren did not inhibit the renin-induced or prorenin-induced activation of the (pro)renin receptor. Conclusion This is the first report demonstrating equal ligand activities of both, renin and prorenin, on the (pro)renin receptor - promyelocytic zinc finger protein–phosphatidylinositol-3 kinase–p85α pathway. The failure of aliskiren to inhibit the noncatalytic effects of renin and prorenin may be of clinical relevance considering the increase in plasma concentrations of (pro)renin under aliskiren treatment.
Clinical Science | 2015
Daniel C. Villela; Julia Leonhardt; Neal Patel; Jason P. Joseph; Sebastian Kirsch; Anders Hallberg; Thomas Unger; Michael Bader; Robson A.S. Santos; Colin Sumners; U. Muscha Steckelings
The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1-7) metabolite alamandine and its receptor MrgD in the observed effects. We conclude that evidence for a functional interaction of both receptors is strong, but that such an interaction may be species- and/or tissue-specific and that elucidation of the precise nature of the interaction is only at the very beginning.
Biochemical Pharmacology | 2012
Sarah Bernhard; Kerstin Seidel; Jennifer Schmitz; Sabrina Klare; Sebastian Kirsch; Eva Schrezenmeier; Daniela Zaade; Heike Meyborg; Petra Goldin-Lang; Philipp Stawowy; Frank S. Zollmann; Thomas Unger; Heiko Funke-Kaiser
The (pro)renin receptor ((P)RR) and Wnt signalling are both involved in different diseases ranging from cardiac and renal end-organ damage to cancer. (P)RR function involves signalling via the transcription factor promyelocytic leukemia zinc finger protein (PLZF) as well as the furin-mediated generation of vacuolar proton-translocating ATPase (V-ATPase)-associated and soluble (P)RR isoforms. Recently, the (P)RR was described as adaptor protein of Wnt (co)receptors. The aim of this study was to analyse the contribution of these distinct (P)RR functions to Wnt signalling. Using Tcf/Lef reporter gene systems in HEK293T and HepG2 cells and quantification of endogenous axin2 mRNA and protein levels in HEK293T cells we were able to demonstrate that full-length (P)RR acts as a repressor of Wnt signalling in a system preactivated either by Wnt3a stimulation or by constitutively active β-catenin. These repressive effects are mediated by Dvl but are independent of the mutation status of β-catenin. Furthermore, the V-ATPase complex, but not PLZF translocation or renin enzymatic activity, is necessary for the induction of Tcf/Lef-responsive genes by Wnt3a. Our data indicate interference of (P)RR and Wnt cascades, a fact that has to be considered concerning pathophysiology of cardio-renal and oncological entities as well as in drug development programs targeting (P)RR or Wnt pathways.
Brain Pathology | 2011
Kerstin Seidel; Sebastian Kirsch; Kristin Lucht; Daniela Zaade; Jana Reinemund; Jennifer Schmitz; Sabrina Klare; Yaosi Li; Jan H. Schefe; Kristin Schmerbach; Petra Goldin-Lang; Frank S. Zollmann; Christa Thöne-Reineke; Thomas Unger; Heiko Funke-Kaiser
Stroke is one of the major medical burdens in industrialized countries. Animal experiments indicate that blockade of the angiotensin AT1 receptor (AT1R) improves neurological outcome after cerebral ischemia. These protective effects are partially mediated by the angiotensin AT2 receptor (AT2R). The transcription factor promyelocytic leukemia zinc finger (PLZF) was identified as a direct adapter protein of the AT2R. Furthermore, our group was able to demonstrate that PLZF also directly binds and mediates the effects of the human (pro)renin receptor [(P)RR] which is involved in brain development. Therefore, we hypothesized that PLZF is involved in neuroprotection.
The Journal of Neuroscience | 2012
Yaosi Li; Kerstin Seidel; Peter Marschall; Michael G. Klein; Antonia Hope; Jens Schacherl; Jennifer Schmitz; Mario Menk; Jan H. Schefe; Jana Reinemund; Rebecca Hugel; Peter Walden; Andreas Schlosser; Rudolf Volkmer; Julia Schimkus; Heike Kölsch; Wolfgang Maier; Johannes Kornhuber; Lutz Frölich; Sabrina Klare; Sebastian Kirsch; Kristin Schmerbach; Sylvia Scheele; Ulrike Grittner; Frank S. Zollmann; Petra Goldin-Lang; Oliver Peters; Ulrich Kintscher; Thomas Unger; Heiko Funke-Kaiser
Genetic factors strongly contribute to the pathogenesis of sporadic Alzheimers disease (AD). Nevertheless, genome-wide association studies only yielded single nucleotide polymorphism loci of moderate importance. In contrast, microsatellite repeats are functionally less characterized structures within our genomes. Previous work has shown that endothelin-converting enzyme-1 (ECE-1) is able to reduce amyloid β content. Here we demonstrate that a CpG-CA repeat within the human ECE-1c promoter is highly polymorphic, harbors transcriptional start sites, is able to recruit the transcription factors poly(ADP-ribose) polymerase-1 and splicing factor proline and glutamine-rich, and is functional regarding haplotype-specific promoter activity. Furthermore, genotyping of 403 AD patients and 444 controls for CpG-CA repeat length indicated shifted allelic frequency distributions. Sequencing of 245 haplotype clones demonstrated that the overall CpG-CA repeat composition of AD patients and controls is distinct. Finally, we show that human and chimpanzee [CpG]m–[CA]n ECE-1c promoter repeats are genetically and functionally distinct. Our data indicate that a short genomic repeat structure constitutes a novel core promoter element, coincides with human evolution, and contributes to the pathogenesis of AD.
Hypertension | 2017
Julia Leonhardt; Daniel C. Villela; Anke Teichmann; Lisa-Marie Munter; Magnus C. Mayer; Maibritt Mardahl; Sebastian Kirsch; Pawel Namsolleck; Kristin Lucht; Verena Benz; Natalia Alenina; Nicholas Daniell; Masatsugu Horiuchi; Masaru Iwai; Gerhard Multhaup; Ralf Schülein; Michael Bader; Robson A.S. Santos; Thomas Unger; Ulrike Muscha Steckelings
The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin–angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1–7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that—at least in astrocytes—both receptors functionally depend on each other.
Alcohol | 2010
Mario Menk; Clarissa von Haefen; Heiko Funke-Kaiser; Marco Sifringer; Jan H. Schefe; Sebastian Kirsch; Kerstin Seidel; Jana Reinemund; Ulrike Muscha Steckelings; Thomas Unger; Claudia Spies
Molecular mechanisms accompanying ethanol-induced cytotoxicity remain to be defined. The renin-angiotensin system with its respective receptors, the angiotensin AT1 and AT2 receptor (AT1R and AT2R), has been implicated in these processes. The AT2R seems to counteract the pro-inflammatory, pro-hypertrophic, and pro-fibrotic actions of the AT1R and is involved in cellular differentiation and tissue repair. Recently, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel negative transcriptional regulator of the AT2R. However, the complex interactions between ethanol, PARP-1, and the AT2R are largely unknown. In this in vitro study, we aimed to clarify whether acute ethanol treatment modifies AT2R promoter activity or AT2R mRNA and protein levels and whether PARP-1 is involved in ethanol-mediated regulation of the AT2R. Murine fibroblasts of the R3T3 and MEF line (murine embryonic fibroblasts) were exposed to ethanol for 24h. AT2R promoter activity, mRNA and protein levels were analyzed with and without PARP-1 inhibition and in PARP-1 knockout MEF cells. Expression of PARP-1 was analyzed over course of time, and cell viability and DNA fragmentation were measured on single-cell level by flow cytometry. Ethanol exposition induced substantial downregulation of the AT2R on promoter, mRNA and protein levels in a dose-dependent manner. Pharmacological inhibition or ablation of PARP-1 completely abolished this effect. Ethanol treatment did not have any effect on AT1R mRNA and protein levels in MEF cells. Further, acute ethanol treatment promoted DNA fragmentation and caused transcriptional induction of PARP-1. Our findings reveal that PARP-1 is an upstream transcriptional regulator of the AT2 receptor in the context of ethanol exposure and represses the AT2R gene in fibroblasts in vitro. Variations in expression of the potentially tissue-protective AT2R might contribute to ethanol-mediated pathology.
International Journal of Molecular Medicine | 2014
Sebastian Kirsch; Eva Schrezenmeier; Sabrina Klare; Daniela Zaade; Kerstin Seidel; Jennifer Schmitz; Sarah Bernhard; Dilyara Lauer; Mark Slack; Petra Goldin-Lang; Thomas Unger; Frank S. Zollmann; Heiko Funke-Kaiser
The (pro)renin receptor [(P)RR] is crucial for cardio-renal pathophysiology. The distinct molecular mechanisms of this receptor are still incompletely understood. The (P)RR is able to interact with different signalling proteins such as promyelocytic leukemia zinc finger protein (PLZF) and Wnt receptors. Moreover, domains of the (P)RR are essential for V-ATPase activity. V-ATPase- and Wnt-mediated effects imply constitutive, i.e., (pro)renin-independent functions of the (P)RR. Regarding ligand-dependent (P)RR signalling, the role of prorenin glycosylation is currently unknown. Therefore, the aim of this study was to analyse the contribution of constitutive (P)RR activity to its cellular effects and the relevance of prorenin glycosylation on its ligand activity. We were able to demonstrate that high glucose induces (P)RR signal transduction whereas deglycosylation of prorenin abolishes its intrinsic activity in neuronal and epithelial cells. By using siRNA against (P)RR or PLZF as well as the PLZF translocation blocker genistein and the specific V-ATPase inhibitor bafilomycin, we were able to dissect three distinct sub-pathways downstream of the (P)RR. The V-ATPase function is ligand-independently associated with strong pro-proliferative effects whereas prorenin causes moderate proliferation in vitro. In contrast, PLZF per se [i.e., in the absence of (pro)renin] does not interfere with cell number.
PLOS ONE | 2013
Daniela Zaade; Jennifer Schmitz; Eileen Benke; Sabrina Klare; Kerstin Seidel; Sebastian Kirsch; Petra Goldin-Lang; Frank S. Zollmann; Thomas Unger; Heiko Funke-Kaiser
The (pro)renin receptor ((P)RR) signaling is involved in different pathophysiologies ranging from cardiorenal end-organ damage via diabetic retinopathy to tumorigenesis. We have previously shown that the transcription factor promyelocytic leukemia zinc finger (PLZF) is an adaptor protein of the (P)RR. Furthermore, recent publications suggest that major functions of the (P)RR are mediated ligand-independently by its transmembrane and intracellular part, which acts as an accessory protein of V-ATPases. The transcriptome and recruitmentome downstream of the V-ATPase function and PLZF in the context of the (P)RR are currently unknown. Therefore, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (P)RR, stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR. We were able to identify distinct and overlapping genetic signatures as well as novel real-time PCR-validated target genes of the different molecular functions of the (P)RR. Moreover, bioinformatic analyses of our data confirm the role of (P)RŔs signal transduction pathways in cardiovascular disease and tumorigenesis.
Pharmacology | 2012
Eva Schrezenmeier; Frank S. Zollmann; Kerstin Seidel; Christian Böhm; Kristin Schmerbach; Melanie Kroh; Sebastian Kirsch; Sabrina Klare; Sarah Bernhard; Kai Kappert; Petra Goldin-Lang; Werner Skuballa; Thomas Unger; Heiko Funke-Kaiser
Background/Aims: Putative in vitro-in vivo correlations of pharmacokinetic (PK) parameters are regarded as a prerequisite to filter hits derived from high-throughput screening (HTS) approaches for subsequent murine in vivo PK studies. Methods: In this study, we assessed stabilities in rat and human microsomes of 121 compounds from an early, academic drug discovery programme targeting the (pro)renin receptor and correlated the respective data with single-dose, in vivo PK parameters of 22 hits administered intravenously in rats. Results: After transformation of in vitro half-lives to predicted in vivo hepatic clearances, r2 regarding in vitro-in vivo clearance correlations were 0.31 and 0.27 for the rat and human species, respectively. Conclusions: Our data concerning structurally diverse real-world compounds indicate that microsomal stability testing is not a tool to triage early compounds for in vivo PK testing.