Sebastian Kurscheid
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Kurscheid.
Neuro-oncology | 2015
Anna Sophie Berghoff; Barbara Kiesel; Georg Widhalm; Orsolya Rajky; Gerda Ricken; Adelheid Wöhrer; Karin Dieckmann; Martin Filipits; Anita Brandstetter; Michael Weller; Sebastian Kurscheid; Monika E. Hegi; Christoph Zielinski; Christine Marosi; Johannes A. Hainfellner; Matthias Preusser; Wolfgang Wick
BACKGROUND Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. METHODS We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. RESULTS Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. CONCLUSION TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma.
PLOS Pathogens | 2011
Tonya M. Colpitts; Jonathan Cox; Dana L. Vanlandingham; Fabiana Feitosa; Gong Cheng; Sebastian Kurscheid; Penghua Wang; Manoj N. Krishnan; Stephen Higgs; Erol Fikrig
West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
Lancet Oncology | 2016
Brigitta G. Baumert; Monika E. Hegi; Martin J. van den Bent; Andreas von Deimling; Thierry Gorlia; Khê Hoang-Xuan; Alba A. Brandes; G. Kantor; M. J. B. Taphoorn; Mohamed Ben Hassel; Christian Hartmann; Gail Ryan; David Capper; Johan M. Kros; Sebastian Kurscheid; Wolfgang Wick; Roelien H. Enting; Michele Reni; Brian Thiessen; Frédéric Dhermain; Jacoline E. C. Bromberg; L. Feuvret; Jaap C. Reijneveld; Olivier Chinot; Johanna M.M. Gijtenbeek; John P. Rossiter; Nicolas Dif; Carmen Balana; José M. Bravo-Marques; Paul Clement
Background Outcome of low-grade glioma (LGG, WHO grade II) is highly variable reflecting molecular heterogeneity of the disease. We compared two different single modality treatment strategies: standard radiotherapy (RT) versus primary temozolomide (TMZ) chemotherapy with the aim of tailoring treatment and identifying predictive molecular factors. Methods 477 patients (2005 – 2012, median FU 48 months) with a low-grade glioma (astrocytoma, oligoastrocytoma, oligodendroglioma, WHO grade II) with at least one high-risk feature (age > 40 years, progressive disease, tumor > 5 cm or crossing the midline, neurological symptoms (e.g. focal or mental deficits, increased intracranial pressure or intractable seizures)) were, after stratification by chromosome 1p-status, randomized to either conformal RT (50.4 Gy/28 fractions) or dose-dense TMZ (75 mg/m2 daily × 21 days, q28 days, max. 12 cycles). Random treatment allocation was performed online using a minimization technique. A planned analysis was performed after 246 progression events. All analyses are intent to treat. Primary clinical endpoint was progression-free survival (PFS), correlative analyses included molecular markers (1p/19q co-deletion, MGMT methylation status, IDH1+2 mutations). The trial has been registered at the European Trials Registry (EudraCT 2004-002714-11) and at ClinicalTrials.gov (NCT00182819). Findings Four hundred seventy-seven patients were randomized. Severe hematological toxicity occurred in 14% of TMZ-treated patients, infections in 3% of TMZ-treated patients, and 1% of RT-treated patients. Moderate to severe fatigue was recorded in 3% of patients in the RT group and 7% in the TMZ group. At a median follow-up of 48 months (IQR:31–56), median PFS was 39 months (IQR:16–46) in the TMZ arm and 46 months (IQR:19–48) in the RT group (hazard ratio 1.16, 95% CI, 0.9–1.5; p=0.22). Median OS has not been reached. Exploratory analyses identified treatment-dependent variation in outcome of molecular LGG subgroups (n=318). Interpretation There was no significant difference in outcome of the overall patient population treated with either radiotherapy alone or TMZ chemotherapy alone. Further data maturation is needed for overall survival analyses and evaluation of the full predictive impact of the molecular subtypes for individualized treatment choices. Funding Merck & Co, Swiss-Bridge Award 2011, Swiss Cancer League.
BMC Molecular Biology | 2009
Sebastian Kurscheid; A.E. Lew-Tabor; Manuel Rodriguez Valle; A. Bruyeres; Vivienne J. Doogan; Ulrike G. Munderloh; Felix D. Guerrero; Roberto A. Barrero; M. Bellgard
BackgroundThe Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype.ResultsWe screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying.ConclusionWe have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects.
Genome Biology | 2015
Sebastian Kurscheid; Pierre Bady; Davide Sciuscio; Ivana Samarzija; Tal Shay; Irene Vassallo; Wim Van Criekinge; Roy Thomas Daniel; Martin J. van den Bent; Christine Marosi; Michael Weller; Warren P. Mason; Eytan Domany; Roger Stupp; Mauro Delorenzi; Monika E. Hegi
BackgroundHOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma.ResultsWe observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively.ConclusionsBased on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.
Cell Reports | 2016
Yalin Liao; Alfredo Castello; Bernd M. Fischer; Stefan Leicht; Sophia Foehr; Christian K. Frese; Chikako Ragan; Sebastian Kurscheid; Eloisa Pagler; Hao Yang; Jeroen Krijgsveld; Matthias W. Hentze; Thomas Preiss
Summary RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.
International Journal for Parasitology | 2011
A.E. Lew-Tabor; Sebastian Kurscheid; Roberto A. Barrero; Cedric Gondro; P. Moolhuijzen; M. Rodriguez Valle; J. A. T. Morgan; Catherine Covacin; M. Bellgard
Knowledge of cattle tick (Rhipicephalus (Boophilus) microplus; Acari: Ixodidae) molecular and cellular pathways has been hampered by the lack of an annotated genome. In addition, most of the tick expressed sequence tags (ESTs) available to date consist of ∼50% unassigned sequences without predicted functions. The most common approach to address this has been the application of RNA interference (RNAi) methods to investigate genes and their pathways. This approach has been widely adopted in tick research despite minimal knowledge of the tick RNAi pathway and double-stranded RNA (dsRNA) uptake mechanisms. A strong knockdown phenotype of adult female ticks had previously been observed using a 594 bp dsRNA targeting the cattle tick homologue for the Drosophila Ubiquitin-63E gene leading to nil or deformed eggs. A NimbleGen cattle tick custom microarray based on the BmiGI.V2 database of R. microplus ESTs was used to evaluate the expression of mRNAs harvested from ticks treated with the tick Ubiquitin-63E 594 bp dsRNA compared with controls. A total of 144 ESTs including TC6372 (Ubiquitin-63E) were down-regulated with 136 ESTs up-regulated following treatment. The results obtained substantiated the knockdown phenotype with ESTs identified as being associated with ubiquitin proteolysis as well as oogenesis, embryogenesis, fatty acid synthesis and stress responses. A bioinformatics analysis was undertaken to predict off-target effects (OTE) resulting from the in silico dicing of the 594 bp Ubiquitin-63E dsRNA which identified 10 down-regulated ESTs (including TC6372) within the list of differentially expressed probes on the microarrays. Subsequent knockdown experiments utilising 196 and 109 bp dsRNAs, and a cocktail of short hairpin RNAs (shRNA) targeting Ubiquitin-63E, demonstrated similar phenotypes for the dsRNAs but nil effect following shRNA treatment. Quantitative reverse transcriptase PCR analysis confirmed differential expression of TC6372 and selected ESTs. Our study demonstrated the minimisation of predicted OTEs in the shorter dsRNA treatments (∼100-200 bp) and the usefulness of microarrays to study knockdown phenotypes.
PLOS ONE | 2012
Yang O. Zhao; Sebastian Kurscheid; Yue Zhang; Lei Liu; Lili Zhang; Kelsey B. Loeliger; Erol Fikrig
Plasmodium spp. are pathogenic to their vertebrate hosts and also apparently, impose a fitness cost on their insect vectors. We show here, however, that Plasmodium-infected mosquitoes survive starvation significantly better than uninfected mosquitoes. This survival advantage during starvation is associated with higher energy resource storage that infected mosquitoes accumulate during period of Plasmodium oocyst development. Microarray analysis revealed that the metabolism of sated mosquitoes is altered in the presence of rapidly growing oocysts, including the down-regulation of several enzymes involved in carbohydrate catabolism. In addition, enhanced expression of several insulin-like peptides was observed in Plasmodium-infected mosquitoes. Blocking insulin-like signaling pathway resulted in impaired Plasmodium development. We conclude that Plasmodium infection alters metabolic pathways in mosquitoes, epitomized by enhanced insulin-like signaling – thereby conferring a survival advantage to the insects during periods of starvation. Manipulation of this pathway might provide new strategies to influence the ability of mosquitoes to survive and transmit the protozoa that cause malaria.
Parasites & Vectors | 2015
M. Rodriguez-Valle; Tao Xu; Sebastian Kurscheid; A.E. Lew-Tabor
BackgroundRhipicephalus (Boophilus) microplus evades the host’s haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes.MethodsThe identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays.ResultsA total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15).ConclusionThis study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Neuro-oncology | 2017
Anna Sophie Berghoff; Barbara Kiesel; Georg Widhalm; Dorothee Wilhelm; Orsolya Rajky; Sebastian Kurscheid; Philip Kresl; Adelheid Wöhrer; Christine Marosi; Monika E. Hegi; Matthias Preusser
Background Tumor infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) are targets of immune checkpoint inhibitors. Methods Forty-three World Health Organization (WHO) grade II/III gliomas (39 IDH-mutant [mut], 4 IDH-wildtype [wt]) and 14 IDH-mut glioblastomas (GBM) were analyzed for TIL (CD3+; PD1+) infiltration and PD-L1 expression. Results were compared with the data of a previously published series of 117 IDH-wt glioblastomas. PD-L1 gene expression levels were evaluated in 677 diffuse gliomas grades II-IV from The Cancer Genome Atlas (TCGA) database. Results TIL and PD-L1 expression were observed in approximately half of WHO grade II/III gliomas. IDH-wt status was associated with significantly higher TIL infiltration and PD-L1 expression among all (grades II-IV) cases (n = 174, P < 0.001) and within the cohort of glioblastomas (n = 131, P < 0.001). In low-grade glioma (LGG) and glioblastoma cohorts of TCGA, significantly higher PD-L1 gene expression levels were evident in IDH-wt compared with IDH-mut samples (LGG: N = 516; P = 1.933e-11, GBM: N = 161; P < 0.009). Lower PD-L1 gene expression was associated with increased promoter methylation (Spearman correlation coefficient -0.36; P < 0.01) in the LGG cohort of TCGA. IDH-mut gliomas had higher PD-L1 gene promoter methylation levels than IDH-wt gliomas (P < 0.01). Conclusions The immunological tumor microenvironment of diffuse gliomas differs in association with IDH mutation status. IDH-wt gliomas display a more prominent TIL infiltration and higher PD-L1 expression than IDH-mut cases. Mechanistically this may be at least in part due to differential PD-L1 gene promoter methylation levels. Our findings may be relevant for immune modulatory treatment strategies in glioma patients.