Sebastian M. Strauch
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian M. Strauch.
Expert Review of Proteomics | 2014
Daniela Grimm; Jessica Pietsch; Markus Wehland; Peter Richter; Sebastian M. Strauch; Michael Lebert; Nils E. Magnusson; Petra Wise; Johann Bauer
Proteomics is performed in microgravity research in order to determine protein alterations occurring qualitatively and quantitatively, when single cells or whole organisms are exposed to real or simulated microgravity. To this purpose, antibody-dependent (Western blotting, flow cytometry, Luminex® technology) and antibody-independent (mass spectrometry, gene array) techniques are applied. The anticipated findings will help to understand microgravity-specific behavior, which has been observed in bacteria, as well as in plant, animal and human cells. To date, the analyses revealed that cell cultures are more sensitive to microgravity than cells embedded in organisms and that proteins changing under microgravity are highly interactive. Furthermore, one has to distinguish between primary gravity-induced and subsequent interaction-dependent changes of proteins, as well as between direct microgravity-related effects and indirect stress responses. Progress in this field will impact on tissue engineering and medicine and will uncover possibilities of counteracting alterations of protein expression at lowered gravity.
Microgravity Science and Technology | 2006
Ruth Hemmersbach; Sebastian M. Strauch; Dieter Seibt; Marianne Schuber
In order to prepare and support space experiments, 2D and 3D clinostats are widely applied to study the influence of simulated weightlessness on biological systems. In order to evaluate the results a comparison between the data obtained in simulation experiments and in real microgravity is necessary. We are currently analyzing the gravity-dependent behavior of the protists Paramecium biaurelia (ciliate) and Euglena gracilis (photosynthetic flagellate) on these different experimental platforms. So far, first results are presented concerning the behaviour of Euglena on a 2D fast rotating clinostat and a 3D clinostat as well as under real microgravity conditions (TEXUS sounding rocket flight), of Paramecium on a 2D clinostat and in microgravity. Our data show similar results during 2D and 3D clinorotation compared to real microgravity with respect to loss of orientation (gravitaxis) of Paramecium and Euglena and a decrease of linearity of the cell tracks of Euglena. However, the increase of the mean swimming velocities, especially during 3D clinorotation (Euglena) and 2D clinorotation of Paramecium might indicate a persisting mechanostimulation of the cells. Further studies including long-term 2D and 3D clinostat exposition will enable us to demonstrate the qualification of the applied simulation methods.
Microgravity Science and Technology | 2006
Donat-P. Häder; Peter Richter; Sebastian M. Strauch; Martin Schuster
The motile behavior of the unicellular photosynthetic flagellate Euglena gracilis was studied during a two-week mission on the Russian satellite Foton M2. The precision of gravitactic orientation was high before launch and, as expected, the cells were unoriented during microgravity. While after previous short-term TEXUS flights the precision of orientation was as high as before launch, it took several hours for the organisms to regain their gravitaxis. Also the percentage of motile cells and the swimming velocity of the remaining motile cells were considerably lower than in the ground control. In preparatory experiments the flagellate Euglena was shown to produce considerable amounts of photosynthetically generated oxygen. In a coupling experiment in a prototype for a planned space mission on Foton M3, the photosynthetic producers were shown to supply sufficient amounts of oxygen to a fish compartment with 35 larval cichlids, Oreochromis mossambicus.
Life sciences in space research | 2015
P.R. Richter; Yongding Liu; Yanjun An; Xugang Li; A. Nasir; Sebastian M. Strauch; I. Becker; J. Krüger; M. Schuster; M. Ntefidou; V. Daiker; F.W.M. Haag; A. Aiach; Michael Lebert
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.
Frontiers in Environmental Science | 2014
Peter Richter; Sebastian M. Strauch; Azizullah Azizullah; Donat-P. Häder
Water soluble chlorophyll (chlorophyllin) exerts pronounced photodynamic activity. Chlorophyllin is a potential remedy against mosquito larvae and aquatic stages in the life cycle of parasites as well as against ectoparasites in fish. In the recent years it was found that mosquito larvae and other pest organisms can be killed by means of photodynamic substances such as different porphyrin derivates (e.g. hematoporphyrin, meso-tri(N-methylpyridyl), meso-mono(N-tetra-decylpyridyl) porphyrine, hematoporphyrin IX, or hermatoporphyrin formula (HPF). It was found that incubation of mosquito larvae in chlorophyllin solution and subsequent irradiation results in photodynamic destruction of the larvae. Incorporation of about 8 ng chlorophyllin per larvae was sufficient to induce its death. In fish mass cultivation ichthyophthiriosis is a severe parasitic protozoan disease caused by the ciliate Ichthyophthirius multifiliis. It was found that incubation of infected fishes in chlorophyllin and subsequent illumination reduced the number of trophonts significantly (more than 50 %). The fishes were not impaired. Chlorophyllin and other photodynamic substances may become a possible countermeasure against I. multifiliis and other ectoparasites in aquaculture. The effectiveness of chlorophyllin depends on light attenuation in the water body.
Astrobiology | 2014
Peter Richter; Sebastian M. Strauch; Maria Ntefidou; Martin Schuster; Viktor Daiker; Adeel Nasir; Ferdinand W.M. Haag; Michael Lebert
Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.
Life sciences in space research | 2017
Ina Becker; Sebastian M. Strauch; Jens Hauslage; Michael Lebert
The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.
Plant Biology | 2014
A. Nasir; Sebastian M. Strauch; I. Becker; A. Sperling; Martin Schuster; Peter Richter; M. Weisskopf; M. Ntefidou; V. Daiker; Yanjun An; Xugang Li; Yongding Liu; Michael Lebert
International Journal of Astrobiology | 2017
Sebastian M. Strauch; Ina Becker; Laura Pölloth; Peter Richter; Ferdinand W.M. Haag; Jens Hauslage; Michael Lebert
Acta Astronautica | 2017
Xiaoyan Li; Peter Richter; Zongjie Hao; Yanjun An; Gaohong Wang; Dunhai Li; Yongding Liu; Sebastian M. Strauch; Martin Schuster; Ferdinand W.M. Haag; Michael Lebert