Sebastian Munck
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Munck.
Cancer Research | 2010
Evelien Rysman; Koen Brusselmans; Katryn Scheys; Leen Timmermans; Rita Derua; Sebastian Munck; Paul P. Van Veldhoven; David Waltregny; Veerle Daniëls; Jelle Machiels; Frank Vanderhoydonc; Karine Smans; Etienne Waelkens; Guido Verhoeven; Johannes V. Swinnen
Activation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive cancers and has been implicated in the production of membranes for rapid cell proliferation. In the current report, we provide evidence that this activation has a more profound role. Using a mass spectrometry-based phospholipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype show an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipogenic switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic enzymes with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospholipid species and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are more susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products and renders cells more susceptible to oxidative stress-induced cell death. As saturated lipids pack more densely, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by diffusion of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin. These data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically changes membrane properties and protects cells from both endogenous and exogenous insults. These findings provide important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ragna Sannerud; Ilse Declerck; Aleksandar Peric; Tim Raemaekers; Guillermo Menendez; Lujia Zhou; Baert Veerle; Katrijn Coen; Sebastian Munck; Bart De Strooper; Giampietro Schiavo; Wim Annaert
Amyloid β (Aβ) peptides, the primary constituents of senile plaques and a hallmark in Alzheimers disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6). Altering ARF6 levels or its activity affects endosomal sorting of BACE1, and consequently results in altered APP processing and Aβ production. Furthermore, sorting of newly internalized BACE1 from ARF6-positive towards RAB GTPase 5 (RAB5)-positive early endosomes depends on its carboxyterminal short acidic cluster-dileucine motif. This ARF6-mediated sorting of BACE1 is confined to the somatodendritic compartment of polarized neurons in agreement with Aβ peptides being primarily secreted from here. These results demonstrate a spatial separation between APP and BACE1 during surface-to-endosome transport, suggesting subcellular trafficking as a regulatory mechanism for this proteolytic processing step. It thereby provides a novel avenue to interfere with Aβ production through a selective modulation of the distinct endosomal transport routes used by BACE1 or APP.
Journal of Cell Biology | 2012
Katrijn Coen; Ronald S. Flannagan; Szilvia Baron; Luciene R. Carraro-Lacroix; Dong Wang; Wendy Vermeire; Christine Michiels; Sebastian Munck; Veerle Baert; Shuzo Sugita; Frank Wuytack; Peter Robin Hiesinger; Sergio Grinstein; Wim Annaert
In contrast to what has been reported previously, endo-lysosomal dysfunction in presenilin-deficient cells does not arise from improper glycosylation of the lysosomal V-ATPase but rather from defective lysosomal calcium homeostasis.
Nature Medicine | 2013
Amantha Thathiah; Katrien Horré; An Snellinx; Elke Vandewyer; Yunhong Huang; Marta Ciesielska; Gerdien De Kloe; Sebastian Munck; Bart De Strooper
β-arrestins are associated with numerous aspects of G protein–coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimers disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2−/− mice. Moreover, in a transgenic mouse model of Alzheimers disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ40 and Aβ42. Two GPCRs implicated previously in Alzheimers disease (GPR3 and the β2-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimers disease.
Cell | 2016
Ragna Sannerud; Cary Esselens; Paulina Ejsmont; Rafael Mattera; Leila Rochin; Arun Kumar Tharkeshwar; Greet De Baets; Veerle De Wever; Roger Habets; Veerle Baert; Wendy Vermeire; Christine Michiels; Arjan J. Groot; Rosanne Wouters; Katleen Dillen; Katlijn Vints; Pieter Baatsen; Sebastian Munck; Rita Derua; Etienne Waelkens; Guriqbal S. Basi; M Mercken; Marc Vooijs; Mathieu Bollen; Joost Schymkowitz; Frederic Rousseau; Juan S. Bonifacino; Guillaume van Niel; Bart De Strooper; Wim Annaert
γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimers disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aβ that contains longer Aβ; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aβ further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aβ42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.
The Journal of Neuroscience | 2010
Melanie Gérard; Angélique Deleersnijder; Veronique Daniëls; Sarah Schreurs; Sebastian Munck; Veerle Reumers; Hans Pottel; Yves Engelborghs; Chris Van den Haute; Jean-Marc Taymans; Zeger Debyser; Veerle Baekelandt
α-Synuclein (α-SYN) is a key player in the pathogenesis of Parkinsons disease (PD). In pathological conditions, the protein is present in a fibrillar, aggregated form inside cytoplasmic inclusions called Lewy bodies. Members of the FK506 binding protein (FKBP) family are peptidyl-prolyl isomerases that were shown recently to accelerate the aggregation of α-SYN in vitro. We now established a neuronal cell culture model for synucleinopathy based on oxidative stress-induced α-SYN aggregation and apoptosis. Using high-content analysis, we examined the role of FKBPs in aggregation and apoptotic cell death. FK506, a specific inhibitor of this family of proteins, inhibited α-SYN aggregation and neuronal cell death in this synucleinopathy model dose dependently. Knockdown of FKBP12 or FKBP52 reduced the number of α-SYN aggregates and protected against cell death, whereas overexpression of FKBP12 or FKBP52 accelerated both aggregation of α-SYN and cell death. Thus, FK506 likely targets FKBP members in the cell culture model. Furthermore, oral administration of FK506 after viral vector-mediated overexpression of α-SYN in adult mouse brain significantly reduced α-SYN aggregate formation and neuronal cell death. Our data explain previously described neuroregenerative and neuroprotective effects of immunophilin ligands and validate FKBPs as a novel drug target for the causative treatment of PD.
The EMBO Journal | 2012
Annette Gärtner; Eugenio F. Fornasiero; Sebastian Munck; Krist’l Vennekens; Eve Seuntjens; Wieland B. Huttner; Flavia Valtorta; Carlos G. Dotti
The precise polarization and orientation of developing neurons is essential for the correct wiring of the brain. In pyramidal excitatory neurons, polarization begins with the sprouting of opposite neurites, which later define directed migration and axo‐dendritic domains. We here show that endogenous N‐cadherin concentrates at one pole of the newborn neuron, from where the first neurite subsequently emerges. Ectopic N‐cadherin is sufficient to favour the place of appearance of the first neurite. The Golgi and centrosome move towards this newly formed morphological pole in a second step, which is regulated by PI3K and the actin/microtubule cytoskeleton. Moreover, loss of function experiments in vivo showed that developing neurons with a non‐functional N‐cadherin misorient their cell axis. These results show that polarization of N‐cadherin in the immediate post‐mitotic stage is an early and crucial mechanism in neuronal polarity.
PLOS ONE | 2011
Alexander D. Crawford; Sandra Liekens; Appolinary R. Kamuhabwa; Jan Maes; Sebastian Munck; Roger Busson; Jef Rozenski; Camila V. Esguerra; Peter de Witte
Natural products represent a significant reservoir of unexplored chemical diversity for early-stage drug discovery. The identification of lead compounds of natural origin would benefit from therapeutically relevant bioassays capable of facilitating the isolation of bioactive molecules from multi-constituent extracts. Towards this end, we developed an in vivo bioassay-guided isolation approach for natural product discovery that combines bioactivity screening in zebrafish embryos with rapid fractionation by analytical thin-layer chromatography (TLC) and initial structural elucidation by high-resolution electrospray mass spectrometry (HRESIMS). Bioactivity screening of East African medicinal plant extracts using fli-1:EGFP transgenic zebrafish embryos identified Oxygonum sinuatum and Plectranthus barbatus as inhibiting vascular development. Zebrafish bioassay-guided fractionation identified the active components of these plants as emodin, an inhibitor of the protein kinase CK2, and coleon A lactone, a rare abietane diterpenoid with no previously described bioactivity. Both emodin and coleon A lactone inhibited mammalian endothelial cell proliferation, migration, and tube formation in vitro, as well as angiogenesis in the chick chorioallantoic membrane (CAM) assay. These results suggest that the combination of zebrafish bioassays with analytical chromatography methods is an effective strategy for the rapid identification of bioactive natural products.
Cancer Research | 2012
Peter Kalev; Michal Simicek; Iria Vazquez; Sebastian Munck; Liping Chen; Thomas Soin; Natasha Danda; Wen Chen; Anna Sablina
Reversible phosphorylation plays a critical role in DNA repair. Here, we report the results of a loss-of-function screen that identifies the PP2A heterotrimeric serine/threonine phosphatases PPP2R2A, PPP2R2D, PPP2R5A, and PPP2R3C in double-strand break (DSB) repair. In particular, we found that PPP2R2A-containing complexes directly dephosphorylated ATM at S367, S1893, and S1981 to regulate its retention at DSB sites. Increased ATM phosphorylation triggered by PPP2R2A attenuation dramatically upregulated the activity of the downstream effector kinase CHK2, resulting in G(1) to S-phase cell-cycle arrest and downregulation of BRCA1 and RAD51. In tumor cells, blocking PPP2R2A thereby impaired the high-fidelity homologous recombination repair pathway and sensitized cells to small-molecule inhibitors of PARP. We found that PPP2R2A was commonly downregulated in non-small cell lung carcinomas, suggesting that PPP2R2A status may serve as a marker to predict therapeutic efficacy to PARP inhibition. In summary, our results deepen understanding of the role of PP2A family phosphatases in DNA repair and suggest PPP2R2A as a marker for PARP inhibitor responses in clinic.
Journal of Cell Biology | 2009
Alessandra di Penta; Valentina Mercaldo; Fulvio Florenzano; Sebastian Munck; M Teresa Ciotti; Francesca Zalfa; Delio Mercanti; Marco Molinari; Claudia Bagni; Tilmann Achsel
Messenger RNA (mRNA) transport to neuronal dendrites is crucial for synaptic plasticity, but little is known of assembly or translational regulation of dendritic messenger ribonucleoproteins (mRNPs). Here we characterize a novel mRNP complex that is found in neuronal dendrites throughout the central nervous system and in some axonal processes of the spinal cord. The complex is characterized by the LSm1 protein, which so far has been implicated in mRNA degradation in nonneuronal cells. In brain, it associates with intact mRNAs. Interestingly, the LSm1-mRNPs contain the cap-binding protein CBP80 that associates with (pre)mRNAs in the nucleus, suggesting that the dendritic LSm1 complex has been assembled in the nucleus. In support of this notion, neuronal LSm1 is partially nuclear and inhibition of mRNA synthesis increases its nuclear localization. Importantly, CBP80 is also present in the dendrites and both LSm1 and CBP80 shift significantly into the spines upon stimulation of glutamergic receptors, suggesting that these mRNPs are translationally activated and contribute to the regulated local protein synthesis.