Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Pfautsch is active.

Publication


Featured researches published by Sebastian Pfautsch.


Science | 2016

Positive biodiversity-productivity relationship predominant in global forests.

Jingjing Liang; Thomas W. Crowther; Nicolas Picard; Susan K. Wiser; Mo Zhou; Giorgio Alberti; Ernst-Detlef Schulze; A. David McGuire; Fabio Bozzato; Hans Pretzsch; Sergio de-Miguel; Alain Paquette; Bruno Hérault; Michael Scherer-Lorenzen; Christopher B. Barrett; Henry B. Glick; Geerten M. Hengeveld; Gert-Jan Nabuurs; Sebastian Pfautsch; Hélder Viana; Alexander C. Vibrans; Christian Ammer; Peter Schall; David David Verbyla; Nadja M. Tchebakova; Markus Fischer; James V. Watson; Han Y. H. Chen; Xiangdong Lei; Mart-Jan Schelhaas

Global biodiversity and productivity The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs. Science, this issue p. 196 Global forest inventory records suggest that biodiversity loss would result in a decline in forest productivity worldwide. INTRODUCTION The biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective. RATIONALE Forests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale. RESULTS We explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline. CONCLUSION Our findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is


Plant Physiology | 2015

Phloem as Capacitor: Radial Transfer of Water into Xylem of Tree Stems Occurs via Symplastic Transport in Ray Parenchyma

Sebastian Pfautsch; Justine Renard; Mark G. Tjoelker; Anya Salih

166 billion to


New Phytologist | 2010

The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance

Giai Petit; Sebastian Pfautsch; Tommaso Anfodillo; Mark A. Adams

490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide. Global effect of tree species diversity on forest productivity. Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right). The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US


Ecology Letters | 2016

Climate determines vascular traits in the ecologically diverse genus Eucalyptus

Sebastian Pfautsch; Marco Harbusch; Anita Wesolowski; Renee A. Smith; Craig Macfarlane; Mark G. Tjoelker; Peter B. Reich; Mark A. Adams

166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Tree Physiology | 2010

Woody legumes: a (re)view from the South.

Mark A. Adams; Judy Simon; Sebastian Pfautsch

Visual evidence for the radial transfer of water from phloem into xylem supports theoretical predictions that phloem acts as a water storage capacitor in tree stems. The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees.


New Phytologist | 2013

Woody clockworks: circadian regulation of night‐time water use in Eucalyptus globulus

Víctor Resco de Dios; Rubén Díaz-Sierra; Michael L. Goulden; Craig V. M. Barton; Matthias M. Boer; Arthur Gessler; Juan Pedro Ferrio; Sebastian Pfautsch; David T. Tissue

*Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. *Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. *Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82-93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = -0.5). *Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50-60 m, beyond the maximum height of most other hardwood trees.


Tree Physiology | 2011

Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation-rehydration cycles despite unlimited water supply

Sebastian Pfautsch; Claudia Keitel; Tarryn L. Turnbull; Mike J Braimbridge; Thomas E Wright; Robert R. Simpson; Jessica A O'Brien; Mark A. Adams

Current theory presumes that natural selection on vascular traits is controlled by a trade-off between efficiency and safety of hydraulic architecture. Hence, traits linked to efficiency, such as vessel diameter, should show biogeographic patterns; but critical tests of these predictions are rare, largely owing to confounding effects of environment, tree size and phylogeny. Using wood sampled from a phylogenetically constrained set of 28 Eucalyptus species, collected from a wide gradient of aridity across Australia, we show that hydraulic architecture reflects adaptive radiation of this genus in response to variation in climate. With increasing aridity, vessel diameters narrow, their frequency increases with a distribution that becomes gradually positively skewed and sapwood density increases while the theoretical hydraulic conductivity declines. Differences in these hydraulic traits appear largely genotypic in origin rather than environmentally plastic. Data reported here reflect long-term adaptation of hydraulic architecture to water availability. Rapidly changing climates, on the other hand, present significant challenges to the ability of eucalypts to adapt their vasculature.


Plant Physiology | 2015

Extreme aridity pushes trees to their physical limits

Maximilian Larter; Timothy J. Brodribb; Sebastian Pfautsch; Régis Burlett; Hervé Cochard; Sylvain Delzon

This review is focused on woody legumes from the southern continents. We highlight that the evolution of the Caesalpinioideae and Mimosoideae with old soils, with variable supplies of water and also with fire has produced a suite of advantageous physiological characteristics. These include good potential for nitrogen fixation and mechanisms for acquiring P. The latter includes the ability to form cluster roots and produce extracellular phosphatase enzymes. Further, many of the species in these subfamilies are known to synthesize in significant amounts osmotically compatible solutes, such as pinitol and other cyclitols/polyols, that help them cope with even severe drought conditions. In many cases, these species regenerate prolifically after fire from seed. Such species and their beneficial characters can now be better exploited to help sequester carbon, provide key nutrients such as nitrogen and phosphorus for companion crops and other plants and provide feedstocks for a range of industries, including energy industries.


Ecology and Evolution | 2011

Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands

Thomas N. Buckley; Tarryn L. Turnbull; Sebastian Pfautsch; Mark A. Adams

The role of the circadian clock in controlling the metabolism of entire trees has seldom been considered. We tested whether the clock influences nocturnal whole-tree water use. Whole-tree chambers allowed the control of environmental variables (temperature, relative humidity). Night-time stomatal conductance (gs ) and sap flow (Q) were monitored in 6- to 8-m-tall Eucalyptus globulus trees during nights when environmental variables were kept constant, and also when conditions varied with time. Artificial neural networks were used to quantify the relative importance of circadian regulation of gs and Q. Under a constant environment, gs and Q declined from 0 to 6 h after dusk, but increased from 6 to 12 h after dusk. While the initial decline could be attributed to multiple processes, the subsequent increase is most consistent with circadian regulation of gs and Q. We conclude that endogenous regulation of gs is an important driver of night-time Q under natural environmental variability. The proportion of nocturnal Q variation associated with circadian regulation (23-56%) was comparable to that attributed to vapor pressure deficit variation (25-58%). This study contributes to our understanding of the linkages between molecular and cellular processes related to circadian regulation, and whole-tree processes related to ecosystem gas exchange in the field.


Tree Physiology | 2009

Nitrogen uptake by Eucalyptus regnans and Acacia spp. – preferences, resource overlap and energetic costs

Sebastian Pfautsch; Heinz Rennenberg; Tina L. Bell; Mark A. Adams

Knowledge about nocturnal transpiration (E(night)) of trees is increasing and its impact on regional water and carbon balance has been recognized. Most of this knowledge has been generated in temperate or equatorial regions. Yet, little is known about E(night) and tree water use (Q) in semi-arid regions. We investigated the influence of atmospheric conditions on daytime (Q(day)) and nighttime water transport (Q(night)) of Eucalyptus victrix L.A.S. Johnson & K.D. Hill growing over shallow groundwater (not >1.5 m in depth) in semi-arid tropical Australia. We recorded Q(day) and Q(night) at different tree heights in conjunction with measurements of stomatal conductance (g(s)) and partitioned E(night) from refilling processes. Q of average-sized trees (200-400 mm diameter) was 1000-3000 l month(-1), but increased exponentially with diameter such that large trees (>500 mm diameter) used up to 8000 l month(-1). Q was remarkably stable across seasons. Water flux densities (J(s)) varied significantly at different tree heights during day and night. We show that g(s) remained significantly different from zero and E(night) was always greater than zero due to vapor pressure deficits (D) that remained >1.5 kPa at night throughout the year. Q(night) reached a maximum of 50% of Q(day) and was >0.03 mm h(-1) averaged across seasons. Refilling began during afternoon hours and continued well into the night. Q(night) eventually stabilized and closely tracked D(night). Coupling of Q(night) and D(night) was particularly strong during the wet season (R2 = 0.95). We suggest that these trees have developed the capacity to withstand a pronounced desiccation-rehydration cycle in a semi-arid environment. Such a cycle has important implications for local and regional hydrological budgets of semi-arid landscapes, as large nighttime water fluxes must be included in any accounting.

Collaboration


Dive into the Sebastian Pfautsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Macfarlane

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Renee A. Smith

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge