Sebastian Preissl
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Preissl.
Nature Communications | 2014
Ralf Gilsbach; Sebastian Preissl; Björn Grüning; Tilman Schnick; Lukas Burger; Vladimir Benes; Andreas Würch; Ulrike Bönisch; Stefan Günther; Rolf Backofen; Bernd K. Fleischmann; Dirk Schübeler; Lutz Hein
The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity.
Nature | 2016
John Arne Dahl; Inkyung Jung; Håvard Aanes; Gareth D. Greggains; Adeel Manaf; Mads Lerdrup; Guoqiang Li; Samantha Kuan; Bin Li; Ah Young Lee; Sebastian Preissl; Ingunn Jermstad; Mads Haugland Haugen; Rajikala Suganthan; Magnar Bjørås; Klaus Hansen; Knut Tomas Dalen; Peter Fedorcsak; Bing Ren; Arne Klungland
Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (μChIP–seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.
Circulation Research | 2015
Sandra Mayer; Ralf Gilsbach; Sebastian Preissl; Elsa Beatriz Monroy Ordonez; Tilman Schnick; Nadine Beetz; Achim Lother; Carolin Rommel; Hannah Ihle; Heiko Bugger; Frank Rühle; Andrea Schrepper; Michael Schwarzer; Claudia Heilmann; Ulrike Bönisch; Shashi Kumar Gupta; Jochen Wilpert; Oliver Kretz; Dominik von Elverfeldt; Joachim H. C. Orth; Klaus Aktories; Friedhelm Beyersdorf; Christoph Bode; Brigitte Stiller; Markus Krüger; Thomas Thum; Torsten Doenst; Monika Stoll; Lutz Hein
Supplemental Digital Content is available in the text.
Cell and Tissue Research | 2014
Thomas G. Nührenberg; Ralf Gilsbach; Sebastian Preissl; Tilman Schnick; Lutz Hein
Substantial new knowledge has accrued, over the past few years, concerning the epigenetic regulation of heart development and disease. Epigenetic mechanisms comprise DNA methylation, ATP-dependent chromatin remodeling, histone modifications, and non-coding RNAs. Many of these processes have been ascertained to influence the tight spatiotemporal control of gene expression during cardiac development. Nevertheless, the relative contribution of each mechanism and their potentially complex interplay remain largely unexplored. Cardiac development and disease are linked through the reactivation of fetal genes upon cardiac hypertrophy and failure. In cardiac disease, changes in gene expression are accompanied and influenced by distinct changes in histone modifications. Detailed knowledge about the epigenetic pathways of cardiac development and function is expected ultimately to lead to novel therapeutic strategies for heart disease and regenerative medicine.
Circulation Research | 2015
Sebastian Preissl; Martin Schwaderer; Alexandra Raulf; Michael Hesse; Björn Grüning; Claudia Köbele; Rolf Backofen; Bernd K. Fleischmann; Lutz Hein; Ralf Gilsbach
RATIONALE Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial. OBJECTIVE The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner. METHODS AND RESULTS Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes. CONCLUSIONS This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.
Cell | 2016
Aindrila Chatterjee; Janine Seyfferth; Jacopo Lucci; Ralf Gilsbach; Sebastian Preissl; Lena Böttinger; Christoph U. Mårtensson; Amol Panhale; Thomas Stehle; Oliver Kretz; Abdullah H. Sahyoun; Sergiy Avilov; Stefan Eimer; Lutz Hein; Nikolaus Pfanner; Thomas Becker; Asifa Akhtar
A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.
Nature Neuroscience | 2018
Sebastian Preissl; Rongxin Fang; Hui Huang; Yuan Zhao; Ramya Raviram; David U. Gorkin; Yanxiao Zhang; Brandon C. Sos; Veena Afzal; Diane E. Dickel; Samantha Kuan; Axel Visel; Len A. Pennacchio; Kun Zhang; Bing Ren
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.This study describes single-nucleus ATAC-seq, a method to profile open chromatin in individual nuclei from frozen tissues. It is used to examine gene regulation in 15,000 nuclei comprising 20 distinct cell types in the developing mouse forebrain.
Nature Communications | 2018
Ralf Gilsbach; Martin Schwaderer; Sebastian Preissl; Björn Grüning; David Kranzhöfer; Pedro Schneider; Thomas G. Nührenberg; Sonia Mulero-Navarro; Dieter Weichenhan; Christian Braun; Martina Dreßen; Adam Jacobs; Harald Lahm; Torsten Doenst; Rolf Backofen; Markus Krane; Bruce D. Gelb; Lutz Hein
Epigenetic mechanisms and transcription factor networks essential for differentiation of cardiac myocytes have been uncovered. However, reshaping of the epigenome of these terminally differentiated cells during fetal development, postnatal maturation, and in disease remains unknown. Here, we investigate the dynamics of the cardiac myocyte epigenome during development and in chronic heart failure. We find that prenatal development and postnatal maturation are characterized by a cooperation of active CpG methylation and histone marks at cis-regulatory and genic regions to shape the cardiac myocyte transcriptome. In contrast, pathological gene expression in terminal heart failure is accompanied by changes in active histone marks without major alterations in CpG methylation and repressive chromatin marks. Notably, cis-regulatory regions in cardiac myocytes are significantly enriched for cardiovascular disease-associated variants. This study uncovers distinct layers of epigenetic regulation not only during prenatal development and postnatal maturation but also in diseased human cardiac myocytes.How the cardiac myocyte epigenome is rearranged during development, postnatal maturation and disease is not well understood. Here, the authors investigate the human cardiac myocyte epigenome during development and chronic heart failure and identify distinct epigenetic programs regulating these processes.
Cell Research | 2018
Jian Yan; Shi-An A. Chen; Andrea Local; Tristin Liu; Yunjiang Qiu; Kristel M. Dorighi; Sebastian Preissl; Chloe M. Rivera; Chaochen Wang; Zhen Ye; Kai Ge; Ming Hu; Joanna Wysocka; Bing Ren
Long-range chromatin interactions between enhancers and promoters are essential for transcription of many developmentally controlled genes in mammals and other metazoans. Currently, the exact mechanisms that connect distal enhancers to their specific target promoters remain to be fully elucidated. Here, we show that the enhancer-specific histone H3 lysine 4 monomethylation (H3K4me1) and the histone methyltransferases MLL3 and MLL4 (MLL3/4) play an active role in this process. We demonstrate that in differentiating mouse embryonic stem cells, MLL3/4-dependent deposition of H3K4me1 at enhancers correlates with increased levels of chromatin interactions, whereas loss of this histone modification leads to reduced levels of chromatin interactions and defects in gene activation during differentiation. H3K4me1 facilitates recruitment of the Cohesin complex, a known regulator of chromatin organization, to chromatin in vitro and in vivo, providing a potential mechanism for MLL3/4 to promote chromatin interactions between enhancers and promoters. Taken together, our results support a role for MLL3/4-dependent H3K4me1 in orchestrating long-range chromatin interactions at enhancers in mammalian cells.
Journal of Molecular and Cellular Cardiology | 2016
Nadine Beetz; Carolin Rommel; Tilman Schnick; Elena Neumann; Achim Lother; Elsa Beatriz Monroy-Ordonez; Martin Zeeb; Sebastian Preissl; Ralf Gilsbach; Ariane Melchior-Becker; Bartosz Rylski; Monika Stoll; Liliana Schaefer; Friedhelm Beyersdorf; Brigitte Stiller; Lutz Hein
AIMS Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. METHODS AND RESULTS Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. CONCLUSIONS Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling.