Sebastian Ullmann
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Ullmann.
Journal of Computational Physics | 2016
Sebastian Ullmann; Marko Rotkvic; Jens Lang
We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.
Archive | 2014
Sebastian Ullmann; Jens Lang
The computationally most expensive part of the stochastic collocation method are usually the numerical solutions of a deterministic equation at the collocation points. We propose a way to reduce the total computation time by replacing the deterministic model with its Galerkin projection on the space spanned by a small number of basis functions. The proper orthogonal decomposition (POD) is used to compute the basis functions from the solutions of the deterministic model at a few collocation points. We consider the computation of the statistics of the Nusselt number for a two-dimensional stationary natural convection problem with a stochastic temperature boundary condition. It turns out that for the estimation of the mean and the probability density, the number of finite element simulations can be significantly reduced by the help of the POD-Galerkin reduced-order model.
arXiv: Numerical Analysis | 2017
Christopher Müller; Sebastian Ullmann; Jens Lang
We study linear systems of equations arising from a stochastic Galerkin finite element discretization of saddle point problems with random data and its iterative solution. We consider the Stokes flow model with random viscosity described by the exponential of a correlated Gaussian process and shortly discuss the discretization framework and the representation of the emerging matrix equation. Due to the high dimensionality and the coupling of the associated symmetric, indefinite, linear system, we resort to iterative solvers and problem-specific preconditioners. As a standard iterative solver for this problem class, we consider the block diagonal preconditioned MINRES method and further introduce the Bramble-Pasciak conjugate gradient method as a promising alternative. This special conjugate gradient method is formulated in a non-standard inner product with a block triangular preconditioner. From a structural point of view, such a block triangular preconditioner enables a better approximation of the original problem than the block diagonal one. We derive eigenvalue estimates to assess the convergence behavior of the two solvers with respect to relevant physical and numerical parameters and verify our findings by the help of a numerical test case. We model Stokes flow in a cavity driven by a moving lid and describe the viscosity by the exponential of a truncated Karhunen-Lo\`eve expansion. Regarding iteration numbers, the Bramble-Pasciak conjugate gradient method with block triangular preconditioner is superior to the MINRES method with block diagonal preconditioner in the considered example.
arXiv: Numerical Analysis | 2017
Christopher Spannring; Sebastian Ullmann; Jens Lang
This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.
Archive | 2013
Sebastian Ullmann; Stefan Löbig; Jens Lang
The quality of large eddy simulations can be substantially improved through optimizing the positions of the grid points. LES-specific spatial coordinates are computed using a dynamic mesh moving PDE defined by means of physically motivated design criteria such as equidistributed resolution of turbulent kinetic energy and shear stresses. This moving mesh approach is applied to a three-dimensional flow over periodic hills at Re=10,595 and the numerical results are compared to a highly resolved LES reference solution. Further, the applicability of reduced-order techniques to the context of large eddy simulations is explored. A Galerkin projection of the incompressible Navier–Stokes equations with Smagorinsky sub-grid filtering on a set of reduced basis functions is used to obtain a reduced-order model that contains the dynamics of the LES. As an alternative method, a reduced-order model of the un-filtered equations is calibrated to a set of LES solutions. Both approaches are tested with POD and CVT modes as underlying reduced basis functions.
Archive | 2014
Sebastian Ullmann
arXiv: Numerical Analysis | 2018
Christopher Müller; Sebastian Ullmann; Jens Lang
arXiv: Numerical Analysis | 2018
Carmen Gräßle; Michael Hinze; Jens Lang; Sebastian Ullmann
Archive | 2018
Sebastian Ullmann
Archive | 2017
Sebastian Ullmann