Sebastian Wallot
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Wallot.
Philosophy of Complex Systems | 2011
Guy C. Van Orden; Heidi Kloos; Sebastian Wallot
Publisher Summary This chapter discusses how coordination is essential to cognition and behavior. It begins with problems inherited from conventional cognitive science, for example the question of intentionality. Then, it discusses theoretical terms of complexity science that have proven useful in cognitive and behavioral science. They culminate in the ideas of self-organized criticality and soft-assembly: Living systems are attracted to optimal temporary states of flexible coordination, which best guarantees contextually appropriate behavior and the wellbeing of the actor. In addition, it describes the conceptual building blocks of complexity with respect to brains, bodies, and behavior. These include constraints, phase transitions, interdependence, and self-organized criticality—concepts that address emergent coordination among system components. Further, it discusses ubiquitous pink noise in human performance. Pink noise is a fundamentally complex phenomenon that reflects an optimal coordination among the components of person and task environment. Discussion concludes with a survey of present challenges and opportunities for complexity and cognitive science.
PLOS ONE | 2013
Vasudevi Reddy; Gabriela Markova; Sebastian Wallot
Anticipation of the actions of others is often used as a measure of action understanding in infancy. In contrast to studies of action understanding which set infants up as observers of actions directed elsewhere, in the present study we explored anticipatory postural adjustments made by infants to one of the most common adult actions directed to them – picking them up. We observed infant behavioural changes and recorded their postural shifts on a pressure mat in three phases: (i) a prior Chat phase, (ii) from the onset of Approach of the mother’s arms, and (iii) from the onset of Contact. In Study 1, eighteen 3-month-old infants showed systematic global postural changes during Approach and Contact, but not during Chat. There was an increase in specific adjustments of the arms (widening or raising) and legs (stiffening and extending or tucking up) during Approach and a decrease in thrashing/general movements during Contact. Shifts in postural stability were evident immediately after onset of Approach and more slowly after Contact, with no regular shifts during Chat. In Study 2 we followed ten infants at 2, 3 and 4 months of age. Anticipatory behavioural adjustments during Approach were present at all ages, but with greater differentiation from a prior Chat phase only at 3 and 4 months. Global postural shifts were also more phase differentiated in older infants. Moreover, there was significantly greater gaze to the mother’s hands during Approach at 4 months. Early anticipatory adjustments to being picked up suggest that infants’ awareness of actions directed to the self may occur earlier than of those directed elsewhere, and thus enable infants’ active participation in joint actions from early in life.
Frontiers in Physiology | 2012
Michael A. Riley; Scott Bonnette; Nikita A. Kuznetsov; Sebastian Wallot; Jianbo Gao
The authors present a tutorial description of adaptive fractal analysis (AFA). AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions.
Frontiers in Physiology | 2012
Guy C. Van Orden; Geoff Hollis; Sebastian Wallot
Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body. The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body’s tensegrity structure, and the evidence of critical phenomena in brain and behavior.
Archive | 2014
Riccardo Fusaroli; Ivana Konvalinka; Sebastian Wallot
The scientific investigation of social interactions presents substantial challenges: interacting agents engage each other at many different levels and timescales (motor and physiological coordination, joint attention, linguistic exchanges, etc.), often making their behaviors interdependent in non-linear ways. In this paper we review the current use of Cross Recurrence Quantification Analysis (CRQA) in the analysis of social interactions, and assess its potential and challenges. We argue that the method can sensitively grasp the dynamics of human interactions, and that it has started producing valuable knowledge about them. However, much work is still necessary: more systematic analyses and interpretation of the recurrence indexes and more consistent reporting of the results,more emphasis on theory-driven studies, exploring interactions involving more than 2 agents and multiple aspects of coordination,and assessing and quantifying complementary coordinative mechanisms. These challenges are discussed and operationalized in recommendations to further develop the field.
Frontiers in Integrative Neuroscience | 2011
Nikita A. Kuznetsov; Sebastian Wallot
The current experiment investigated the effect of visual accuracy feedback on the structure of variability of time interval estimates in the continuation tapping paradigm. Participants were asked to repeatedly estimate a 1-s interval for a prolonged period of time by tapping their index finger. In some conditions, participants received accuracy feedback after every estimate, whereas in other conditions, no feedback was given. Also, the likelihood of receiving visual feedback was manipulated by adjusting the tolerance band around the 1-s target interval so that feedback was displayed only if the temporal estimate deviated from the target interval by more than 50, 100, or 200 ms respectively. We analyzed the structure of variability of the inter-tap intervals with fractal and multifractal methods that allow for a quantification of complex long-range correlation patterns in the timing performance. Our results indicate that feedback changes the long-range correlation structure of time estimates: Increased amounts of feedback lead to a decrease in fractal long-range correlations, as well to a decrease in the magnitude of local fluctuations in the performance. The multifractal characteristics of the time estimates were not impacted by the presence of accuracy feedback. Nevertheless, most of the data sets show significant multifractal signatures. We interpret these findings as showing that feedback acts to constrain and possibly reorganize timing performance. Implications for mechanistic and complex systems-based theories of timing behavior are discussed.
Ecological Psychology | 2011
Sebastian Wallot; Guy C. Van Orden
Speech acts, conversations, and other language activities emerge from anticipatory dynamics that situate minds and bodies near critical states. Critical states entail a kind of symmetry in which possible actions exist simultaneously as propensities to act. To speak or understand is to break the symmetry of these possibilities and realize the utterance that is expressed. This hypothesis is derived from complexity theory and agrees with findings that concern action generally and linguistic performance in particular.
Journal of Experimental Psychology: Learning, Memory and Cognition | 2014
Sebastian Wallot; Beth A. O'Brien; Anna Haussmann; Heidi Kloos; Marlene S. Lyby
Reading speed is commonly used as an index of reading fluency. However, reading speed is not a consistent predictor of text comprehension, when speed and comprehension are measured on the same text within the same reader. This might be due to the somewhat ambiguous nature of reading speed, which is sometimes regarded as a feature of the reading process, and sometimes as a product of that process. We argue that both reading speed and comprehension should be seen as the result of the reading process, and that the process of fluent text reading can instead be described by complexity metrics that quantify aspects of the stability of the reading process. In this article, we introduce complexity metrics in the context of reading and apply them to data from a self-paced reading study. In this study, children and adults read a text silently or aloud and answered comprehension questions after reading. Our results show that recurrence metrics that quantify the degree of temporal structure in reading times yield better prediction of text comprehension compared to reading speed. However, the results for fractal metrics are less clear. Furthermore, prediction of text comprehension is generally strongest and most consistent across silent and oral reading when comprehension scores are normalized by reading speed. Analyses of word length and word frequency indicate that the observed complexity in reading times is not a simple function of the lexical properties of the text, suggesting that text reading might work differently compared to reading of isolated word or sentences.
PLOS ONE | 2013
Sebastian Wallot; Geoff Hollis; Marieke M. J. W. van Rooij
The process of connected text reading has received very little attention in contemporary cognitive psychology. This lack of attention is in parts due to a research tradition that emphasizes the role of basic lexical constituents, which can be studied in isolated words or sentences. However, this lack of attention is in parts also due to the lack of statistical analysis techniques, which accommodate interdependent time series. In this study, we investigate text reading performance with traditional and nonlinear analysis techniques and show how outcomes from multiple analyses can used to create a more detailed picture of the process of text reading. Specifically, we investigate reading performance of groups of literate adult readers that differ in reading fluency during a self-paced text reading task. Our results indicate that classical metrics of reading (such as word frequency) do not capture text reading very well, and that classical measures of reading fluency (such as average reading time) distinguish relatively poorly between participant groups. Nonlinear analyses of distribution tails and reading time fluctuations provide more fine-grained information about the reading process and reading fluency.
Frontiers in Psychology | 2014
Drew H. Abney; Anne S. Warlaumont; Anna Haussman; Jessica M. Ross; Sebastian Wallot
The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infants vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infants limbs and an audio recorder was worn on the childs chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infants behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior.