Sebastian Wüster
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Wüster.
Physical Review Letters | 2010
Sebastian Wüster; C. Ates; Alexander Eisfeld; Jan M. Rost
In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newtons cradle.
Physical Review Letters | 2015
H. Schempp; G. Günter; Sebastian Wüster; M. Weidemüller; S. Whitlock
We investigate the transport of excitations through a chain of atoms with nonlocal dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping, and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of nontrivial dissipation, correlations, and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.
Physical Review Letters | 2015
David W. Schönleber; Alexander Eisfeld; Michael Genkin; S. Whitlock; Sebastian Wüster
We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Energetic disorder and decoherence introduced by the interaction with the background gas atoms can be controlled by the laser parameters. This allows for an almost ideal realization of a Haken-Reineker-Strobl-type model for energy transport. The transport can be monitored using the same mechanism that provides control over the environment. The degree of decoherence is traced back to information gained on the excitation location through the monitoring, turning the setup into an experimentally accessible model system for studying the effects of quantum measurements on the dynamics of a many-body quantum system.
Physical Review Letters | 2011
Sebastian Wüster; Alexander Eisfeld; Jan M. Rost
We find that energy surfaces of more than two atoms or molecules interacting via transition dipole-dipole potentials generically possess conical intersections (CIs). Typically only few atoms participate strongly in such an intersection. For the fundamental case, a circular trimer, we show how the CI affects adiabatic excitation transport via electronic decoherence or geometric phase interference. These phenomena may be experimentally accessible if the trimer is realized by light alkali atoms in a ring trap, whose interactions are induced by off-resonant dressing with Rydberg states. Such a setup promises a direct probe of the full many-body density dynamics near a CI.
New Journal of Physics | 2011
Sebastian Wüster; C. Ates; Alexander Eisfeld; Jan M. Rost
We show how to create long-range interactions between alkali atoms in different hyperfine ground states, with the goal of coherent quantum transport. The scheme uses off-resonant dressing with atomic Rydberg states. We demonstrate coherent migration of electronic excitation through dressed dipole-dipole interaction by full solutions of models with four essential states per atom and give the structure of the spectrum of dressed states for a dimer. In addition, we present an effective (perturbative) Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics. We discuss excitation transport in detail for a chain of five atoms. In the presented scheme, the actual population in the Rydberg state is kept small. Dressing offers many advantages over the direct use of Rydberg levels: it reduces ionization probabilities and provides an additional tuning parameter for lifetimes and interaction strengths.
Physical Review A | 2007
Sebastian Wüster; Beata J. Dabrowska-Wüster; A. S. Bradley; Matthew J. Davis; P. Blair Blakie; Joseph Hope; Craig Savage
We perform the first numerical three-dimensional studies of quantum field effects in the Bosenova experiment on collapsing condensates by E. Donley et al. [Nature (London) 415, 39 (2002)] using the exact experimental geometry. In a stochastic truncated Wigner simulation of the collapse, the collapse times are larger than the experimentally measured values. We find that a finite temperature initial state leads to an increased creation rate of uncondensed atoms, but not to a reduction of the collapse time. A comparison of the time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more tractable spherical trap shows excellent agreement between the uncondensed populations. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects.
Journal of Physics B | 2011
Sebastian Möbius; Sebastian Wüster; C. Ates; Alexander Eisfeld; Jan M. Rost
We consider the interplay between excitonic and atomic motion in a regular, flexible chain of Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains [Wüster et al., Phys. Rev. Lett 105 053004 (2010)]. In such a Rydberg chain, similar to molecular aggregates, an electronic excitation is delocalised due to long range dipole-dipole interactions among the atoms. The transport of an exciton that is initially trapped by a chain dislocation is strongly coupled to nuclear dynamics, forming a localised pulse of combined excitation and displacement. This pulse transfers entanglement between dislocated atoms adiabatically along the chain. Details about the interaction and the preparation of the initial state are discussed. We also present evidence that the quantum dynamics of this complex many-body problem can be accurately described by selected quantum-classical methods, which greatly simplify investigations of excitation transport in flexible chains. PACS numbers: 32.80.Ee, 82.20.Rp, 34.20.CfWe consider the interplay between excitonic and atomic motion in a regular, flexible chain of Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains (Wuster et al 2010 Phys. Rev. Lett. 105 053004). In such a Rydberg chain, similar to molecular aggregates, an electronic excitation is delocalized due to long-range dipole–dipole interactions among the atoms. The transport of an exciton that is initially trapped by a chain dislocation is strongly coupled to nuclear dynamics, forming a localized pulse of combined excitation and displacement. This pulse transfers entanglement between dislocated atoms adiabatically along the chain. Details about the interaction and the preparation of the initial state are discussed. We also present evidence that the quantum dynamics of this complex many-body problem can be accurately described by selected quantum–classical methods, which greatly simplify investigations of excitation transport in flexible chains.
New Journal of Physics | 2009
B J Dabrowska-Wüster; Sebastian Wüster; Matthew J. Davis
We model the dynamics of formation of multiple, long-lived, bright solitary waves (BSWs) in the collapse of Bose–Einstein condensates with attractive interactions as studied in the experiment of Cornish et al (2006 Phys. Rev. Lett. 96 170401). We use both mean-field and approximate quantum field simulation techniques. While a number of separated wave packets form as observed in the experiment, they do not have a repulsive π phase difference as has been previously inferred. We observe that the inclusion of quantum fluctuations causes soliton dynamics to be predominantly repulsive in one-dimensional (1D) simulations independent of their initial relative phase. However, indicative 3D simulations do not show a similar effect. In contrast, in 3D quantum noise has a negative impact on BSW lifetimes. Finally, we show that condensate oscillations, after the collapse, may serve to deduce three-body recombination rates.
Physical Review A | 2010
Sebastian Wüster; Jovica Stanojevic; C. Ates; Thomas Pohl; P. Deuar; Joel F. Corney; Jan M. Rost
We show that Rydberg states in an ultra-cold gas can be excited with strongly preferred nearestneighbor distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002]. Near to the end of the echo sequence, almost any remaining Rydberg atom is separated from its nextneighbor Rydberg atom by a distance slightly larger than the instantaneous blockade radius half-way through the pulse. These correlations lead to large deviations of the atom counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of samples with small numbers of atoms. We finally demonstrate the utility of the !-expansion for the approximate description of correlation dynamics through an echo sequence.
Physical Review Letters | 2014
Karsten Leonhardt; Sebastian Wüster; Jan M. Rost
Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.