Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Zimmer is active.

Publication


Featured researches published by Sebastian Zimmer.


Nature Immunology | 2014

The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation.

Bernardo S. Franklin; Lukas Bossaller; Dominic De Nardo; Jacqueline M Ratter; Andrea Stutz; Gudrun Engels; Christoph Brenker; Mark Nordhoff; Sandra R Mirandola; Ashraf Al-Amoudi; Matthew Mangan; Sebastian Zimmer; Brian G. Monks; Martin Fricke; Reinhold Ernst Schmidt; Terje Espevik; Bernadette Jones; Andrew G. Jarnicki; Philip M. Hansbro; Patricia Busto; Ann Marshak-Rothstein; Simone Hornemann; Adriano Aguzzi; Wolfgang Kastenmüller; Eicke Latz

Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adaptor ASC and the assembly of ASC specks. ASC specks recruit and activate caspase-1, which induces maturation of the cytokine interleukin 1β (IL-1β) and pyroptotic cell death. Here we found that after pyroptosis, ASC specks accumulated in the extracellular space, where they promoted further maturation of IL-1β. In addition, phagocytosis of ASC specks by macrophages induced lysosomal damage and nucleation of soluble ASC, as well as activation of IL-1β in recipient cells. ASC specks appeared in bodily fluids from inflamed tissues, and autoantibodies to ASC specks developed in patients and mice with autoimmune pathologies. Together these findings reveal extracellular functions of ASC specks and a previously unknown form of cell-to-cell communication.


Nature Immunology | 2014

High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3

Dominic De Nardo; Larisa I. Labzin; Hajime Kono; Reiko Seki; Susanne Schmidt; Marc Beyer; Dakang Xu; Sebastian Zimmer; Catharina Lahrmann; Frank A. Schildberg; Johanna Vogelhuber; Michael Kraut; Thomas Ulas; Anja Kerksiek; Wolfgang Krebs; Niklas Bode; Alena Grebe; Michael L. Fitzgerald; Nicholas J. Hernandez; Bryan R. G. Williams; Percy A. Knolle; Manfred Kneilling; Martin Röcken; Dieter Lütjohann; Samuel D. Wright; Joachim L. Schultze; Eicke Latz

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Science Translational Medicine | 2016

Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

Sebastian Zimmer; Alena Grebe; Siril Skaret Bakke; Niklas Bode; Bente Halvorsen; Thomas Ulas; Mona Skjelland; Dominic De Nardo; Larisa I. Labzin; Anja Kerksiek; Chris Hempel; Michael T. Heneka; Victoria Hawxhurst; Michael L. Fitzgerald; Jonel Trebicka; Ingemar Björkhem; Jan Åke Gustafsson; Marit Westerterp; Alan R. Tall; Samuel D. Wright; Terje Espevik; Joachim L. Schultze; Georg Nickenig; Dieter Lütjohann; Eicke Latz

The cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin facilitates atheroprotective mechanisms through oxysterol-mediated reprogramming of macrophages. Dissolving away cholesterol Cardiovascular disease resulting from atherosclerosis is one of the most common causes of death worldwide, and additional therapies for this disease are greatly needed because not all patients can be effectively treated with existing approaches. Cyclodextrin is a common FDA-approved substance that is already used as a solubilizing agent to improve delivery of various drugs. Now, Zimmer et al. have discovered that cyclodextrin can also solubilize cholesterol, removing it from plaques, dissolving cholesterol crystals, and successfully treating atherosclerosis in a mouse model. Because cyclodextrin is already known to be safe in humans, this drug is now a potential candidate for testing in human patients for the treatment of atherosclerosis. Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B–containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)–mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.


Circulation Research | 2011

Activation of Endothelial Toll-Like Receptor 3 Impairs Endothelial Function

Sebastian Zimmer; Martin Steinmetz; Tobias Asdonk; Inga Motz; Christoph Coch; Evelyn Hartmann; Winfried Barchet; Sven Wassmann; Gunther Hartmann; Georg Nickenig

Rationale: Endothelial dysfunction and atherosclerosis are chronic inflammatory diseases characterized by activation of the innate and acquired immune system. Specialized protein receptors of the innate immune system recognize products of microorganisms and endogenous ligands such as nucleic acids. Toll-like receptor 3 (TLR3), for example, detects long double-stranded RNA and is abundantly expressed in endothelial cells. Whether innate immunity contributes to atherogenic mechanisms in endothelial cells is poorly understood. Objective: We sought to determine the effects of TLR3 activation in endothelial cells. Methods and Results: We first investigated whether stimulation of TLR3 influences endothelial biology in mice. Intravenous injection of polyinosine polycytidylic acid, a synthetic double-stranded RNA analog and TLR3 ligand, impaired endothelium-dependent vasodilation, increased vascular production of reactive oxygen species, and reduced reendothelialization after carotid artery injury in wild-type mice compared with controls but had no effect in TLR3−/− animals. TLR3 stimulation not only induced endothelial dysfunction but also enhanced the formation of atherosclerotic plaques in apolipoprotein E–deficient mice. In vitro incubation of endothelial cells with polyinosine polycytidylic acid induced production of the proinflammatory cytokines interleukin-8 and interferon-&ggr;–induced protein 10, increased formation of reactive oxygen species, diminished proliferation, and increased apoptosis, which suggests that endothelial cells are able to directly detect and respond to TLR3 ligands. Neutralization of interleukin-8 and interferon-&ggr;–induced protein 10 antagonizes the observed negative effects of polyinosine polycytidylic acid. We found elevated levels of circulating endothelial progenitor cells in polyinosine polycytidylic acid–treated mice, although they displayed increased endothelial dysfunction. Stimulation of TLR3 in cultured endothelial progenitor cells, however, led to increased formation of reactive oxygen species, increased apoptosis, and reduced migration. Injection of endothelial progenitor cells that had been incubated with polyinosine polycytidylic acid ex vivo hindered reendothelialization after carotid artery injury. Therefore, endothelial progenitor cell function was affected by TLR3 stimulation. Finally, apolipoprotein E–deficient/TLR3-deficient mice exhibited improved endothelial function compared with apolipoprotein E–deficient/TLR3+/+ littermates. Conclusions: Immunorecognition of long double-stranded RNA by endothelial cells may be an important mechanism involved in endothelial cell activation and development of endothelial dysfunction.


Journal of Molecular and Cellular Cardiology | 2011

Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo

Friedrich Felix Hoyer; Martin Steinmetz; Sebastian Zimmer; Astrid Becker; Dieter Lütjohann; Rainer Buchalla; Andreas Zimmer; Georg Nickenig

Low-dose oral tetrahydrocannabinol (THC) reduces progression of atherosclerosis in mice. THC activates central cannabinoid-1 receptors (CB1) with subsequent psychoactive effects as well as peripheral cannabinoid-2 receptors (CB2). In order to dissect the underlying mechanisms, we performed experiments under selective CB2 stimulation as well as after genetic disruption of the CB2 receptor. Atherosclerosis prone apolipoprotein E-deficient mice were crossed with cannabinoid receptor-2 deficient mice to obtain ApoE -/- CB2 -/- double knockout mice. After 8weeks of a high-cholesterol diet, immunohistochemical stainings of the aortic root revealed that vascular leukocyte infiltration in atherosclerotic plaques was accelerated in ApoE -/- CB2 -/- mice compared with ApoE -/- mice. This was accompanied by increased release of reactive oxygen species as measured using L012-enhanced chemiluminescence, and by decreased endothelial function as assessed in isolated aortic rings in organ chamber experiments. ApoE -/- mice treated with the selective CB2 agonist JWH 133 during a high-cholesterol diet showed decreased atherosclerotic lesion formation, improved endothelial function and reduced levels of reactive oxygen species. To assess whether CB2 expression in circulating cells influences atherosclerosis, irradiated ApoE -/- mice were repopulated with bone marrow-derived cells from ApoE -/- and ApoE -/- CB2 -/- mice and were fed a high-cholesterol diet for 8weeks. CB2 deficiency in bone marrow-derived cells increased leukocyte infiltration into the vessel wall, but had no impact on plaque formation. Cell culture experiments revealed that CB2 activation diminishes ROS generation in vascular cells. Selective CB2 receptor stimulation modulates atherogenesis via impact on both circulating proinflammatory and vascular cells.


Journal of Cancer Research and Clinical Oncology | 2009

Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling

Sebastian Zimmer; Philip Kahl; Theresa M. Buhl; Susanne Steiner; Eva Wardelmann; Sabine Merkelbach-Bruse; Reinhard Buettner; Lukas C. Heukamp

PurposeThe efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens.MethodsWe have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry.ResultsWe show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines.


Circulation Research | 2015

Danger Signaling in Atherosclerosis

Sebastian Zimmer; Alena Grebe; Eicke Latz

All aspects of the pathogenesis of atherosclerosis are critically influenced by the inflammatory response in vascular plaques. Research in the field of innate immunity from the past 2 decades has uncovered many novel mechanisms elucidating how immune cells sense microbes, tissue damage, and metabolic derangements. Here, we summarize which triggers of innate immunity appear during atherogenesis and by which pathways they can contribute to inflammation in atherosclerotic plaques. The increased understanding gained from studies assessing how immune activation is associated with the pathogenesis of atherosclerosis has provided many novel targets for potential therapeutic intervention. Excitingly, the concept that inflammation may be the core of cardiovascular disease is currently being clinically evaluated and will probably encourage further studies in this area.


Scientific Reports | 2015

Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis.

Robert Schierwagen; Lara Maybüchen; Sebastian Zimmer; Kanishka Hittatiya; Christer Matthias Bäck; Sabine Klein; Frank E. Uschner; Winfried Reul; Peter Boor; Georg Nickenig; Christian P. Strassburg; Christian Trautwein; Jogchum Plat; Dieter Lütjohann; Tilman Sauerbruch; Frank Tacke; Jonel Trebicka

Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE−/− mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NASH model with significant fibrosis and MS. ApoE−/− and wild-type mice (wt) were fed either a western-diet (WD), methionine-choline-deficient-diet (MCD) or normal chow. Liver histology, RT-PCR, hepatic hydroxyproline content, triglycerides and cholesterol levels, and fasting glucose levels assessed hepatic steatosis, inflammation and fibrosis. Further, portal pressure was measured invasively, and kidney pathology was assessed by histology. ApoE−/− mice receiving WD showed abnormal glucose tolerance, hepatomegaly, weight gain and full spectrum of NASH including hepatic steatosis, fibrosis and inflammation, with no sign of renal damage. MCD-animals showed less severe liver fibrosis, but detectable renal pathological changes, besides weight loss and unchanged glucose tolerance. This study describes a murine NASH model with distinct hepatic steatosis, inflammation and fibrosis, without renal pathology. ApoE−/− mice receiving WD represent a novel and fast model with all characteristic features of NASH and MS well suitable for NASH research.


Chest | 2010

VEGF gene haplotypes are associated with sarcoidosis.

Stefan Pabst; Anna Karpushova; Amalia Diaz-Lacava; Stefan Herms; Maja Walier; Sebastian Zimmer; Sven Cichon; Georg Nickenig; Markus M. Nöthen; Thomas F. Wienker; Christian Grohé

BACKGROUND The cause of sarcoidosis is unclear. Evidence suggests that there is a genetic susceptibility toward the disease. In this study, we examined whether haplotypes of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 are associated with the onset or the course of sarcoidosis. METHODS Three hundred white patients with sarcoidosis and 381 matched controls were included. Sixty-three haplotype-tagging single nucleotide polymorphisms (SNPs) in the VEGF and VEGFR-1 and VEGFR-2 genes were selected from the HapMap Project phase 2. Mass spectrometry-based SNP genotyping was performed. RESULTS Sarcoidosis, in general, was significantly associated with three SNPs in the VEGFR-1 gene: rs7337610 (P = .041), rs2296283 (P = .034), and rs12858139 (P = .027). In an acute course (defined as less than two episodes in a lifetime or a course lasting less than 2 years), an association of three SNPs in the VEGF gene was observed: rs833060 (P = .004), rs833068 (P = .008), and rs3025000 (P = .012). In the VEGFR-2 gene, one SNP was associated with an acute course of sarcoidosis (rs7667298, P = .023), whereas two SNPs were associated with a chronic course of sarcoidosis: rs7691507 (P = .029) and rs2125489 (P = .024). We then performed a haplotype analysis. After permutation-based correction, no significant haplotype association for the VEGF receptors was observed. However, we found two haplotypes associated with the onset of sarcoidosis in the VEGF gene. Even after correction for multiple testing, we obtained a P value of .0388. Moreover, patients with a chronic course of the disease showed a P value of .0103 for the same haplotype. CONCLUSIONS There is strong evidence that VEGF and its receptors are involved in the onset of sarcoidosis and influence its course.


Archives of Biochemistry and Biophysics | 2009

The heterogenous nuclear riboprotein S1-1 regulates AT1 receptor gene expression via transcriptional and posttranscriptional mechanisms

Cornelius F.H. Mueller; Anja Berger; Sebastian Zimmer; Vedat Tiyerili; Georg Nickenig

The AT1 receptor plays an essential role in the pathogenesis of atherosclerosis. AT1 receptor expression is predominately mediated via mRNA destabilization by mRNA binding proteins. We identified via MALDI-analysis the heterogenous nuclear riboprotein S1-1 as an important regulator of AT1 receptor mRNA stability. The S1-1 protein possesses multiple nucleolar and cellular functions in vascular smooth muscle cells (VSMC). Overexpression of S1-1 sense resulted in VSMC in significant stabilization of AT1 receptor mRNA. However, this stabilization of the AT1 receptor mRNA is accompanied by a significantly reduced AT1 receptor mRNA transcription as shown via nuclear run-on assay resulting finally in reduced AT1 receptor mRNA levels. Additionally, S1-1 overexpression leads to increased apoptosis in VSMC and decreases VSMC proliferation.

Collaboration


Dive into the Sebastian Zimmer's collaboration.

Top Co-Authors

Avatar

Georg Nickenig

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos Werner

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vedat Tiyerili

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jehle

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge