Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastiano Calandra is active.

Publication


Featured researches published by Sebastiano Calandra.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Inherited Apolipoprotein A-V Deficiency in Severe Hypertriglyceridemia

Claudio Priore Oliva; Livia Pisciotta; Giovanni Li Volti; Maria Sambataro; Alfredo Cantafora; Antonella Bellocchio; Alberico L. Catapano; Patrizia Tarugi; Stefano Bertolini; Sebastiano Calandra

Objective— Mutations in LPL or APOC2 genes are recognized causes of inherited forms of severe hypertriglyceridemia. However, some hypertrigliceridemic patients do not have mutations in either of these genes. Because inactivation or hyperexpression of APOA5 gene, encoding apolipoprotein A-V (apoA-V), causes a marked increase or decrease of plasma triglycerides in mice, and because some common polymorphisms of this gene affect plasma triglycerides in humans, we have hypothesized that loss of function mutations in APOA5 gene might cause hypertriglyceridemia. Methods and Results— We sequenced APOA5 gene in 10 hypertriglyceridemic patients in whom mutations in LPL and APOC2 genes had been excluded. One of them was found to be homozygous for a mutation in APOA5 gene (c.433 C>T, Q145X), predicted to generate a truncated apoA-V devoid of key functional domains. The plasma of this patient was found to activate LPL in vitro less efficiently than control plasma, thus suggesting that apoA-V might be an activator of LPL. Ten carriers of Q145X mutation were found in the patient’s family; 5 of them had mild hypertriglyceridemia. Conclusions— As predicted from animal studies, apoA-V deficiency is associated with severe hypertriglyceridemia in humans. This observation suggests that apoA-V regulates the secretion and/or catabolism of triglyceride-rich lipoproteins.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families.

Laura Calabresi; Livia Pisciotta; Anna Costantin; Ilaria Frigerio; Ivano Eberini; Paola Alessandrini; Marcello Arca; Gabriele Bittolo Bon; Giuliano Boscutti; Ghil Busnach; Giovanni M. Frascà; Loreto Gesualdo; Maddalena Gigante; Graziana Lupattelli; Anna Montali; Stefano Pizzolitto; Ivana Rabbone; M. Rolleri; Giacomo Ruotolo; T. Sampietro; Adalberto Sessa; Gaetano Vaudo; Alfredo Cantafora; Fabrizio Veglia; Sebastiano Calandra; Stefano Bertolini; Guido Franceschini

Objective—To better understand the role of lecithin:cholesterol acyltransferase (LCAT) in lipoprotein metabolism through the genetic and biochemical characterization of families carrying mutations in the LCAT gene. Methods and Results—Thirteen families carrying 17 different mutations in the LCAT gene were identified by Lipid Clinics and Departments of Nephrology throughout Italy. DNA analysis of 82 family members identified 15 carriers of 2 mutant LCAT alleles, 11 with familial LCAT deficiency (FLD) and 4 with fish-eye disease (FED). Forty-four individuals carried 1 mutant LCAT allele, and 23 had a normal genotype. Plasma unesterified cholesterol, unesterified/total cholesterol ratio, triglycerides, very-low-density lipoprotein cholesterol, and pre-&bgr; high-density lipoprotein (LDL) were elevated, and high-density lipoprotein (HDL) cholesterol, apolipoprotein A-I, apolipoprotein A-II, apolipoprotein B, LpA-I, LpA-I:A-II, cholesterol esterification rate, LCAT activity and concentration, and LDL and HDL3 particle size were reduced in a gene–dose-dependent manner in carriers of mutant LCAT alleles. No differences were found in the lipid/lipoprotein profile of FLD and FED cases, except for higher plasma unesterified cholesterol and unesterified/total cholesterol ratio in the former. Conclusion—In a large series of subjects carrying mutations in the LCAT gene, the inheritance of a mutated LCAT genotype causes a gene–dose-dependent alteration in the plasma lipid/lipoprotein profile, which is remarkably similar between subjects classified as FLD or FED.


The Lancet | 2002

Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: A clinical and molecular genetic analysis

Marcello Arca; Giovanni Zuliani; Kenneth R. Wilund; Filomena Campagna; Renato Fellin; Stefano Bertolini; Sebastiano Calandra; Giorgio Ricci; Nicola Glorioso; Mario Maioli; Paolo Pintus; Ciriaco Carru; Fausto Cossu; Jonathan C. Cohen; Helen H. Hobbs

BACKGROUND Autosomal recessive hypercholesterolaemia (ARH) is caused by mutations in a putative adaptor protein called ARH. This recessive disorder, characterised by severe hypercholesterolaemia, xanthomatosis, and premature coronary artery disease, is rare except on the island of Sardinia, Italy. Our aim was to ascertain why ARH is more common on Sardinia than elsewhere. METHODS We obtained detailed medical histories, did physical examinations, measured concentrations of lipoproteins, and harvested genomic DNA from 28 Sardinians with ARH from 17 unrelated families. We sequenced the coding regions and consensus splice sites of ARH in probands from these families, and from 40 individuals of non-Sardinian origin who had an autosomal recessive form of hypercholesterolaemia of unknown cause. FINDINGS Two ARH mutations, a frameshift mutation (c432insA) in exon 4 (ARH1) and a nonsense mutation (c65G-->A) in exon 1 (ARH2), were present in all of the 17 unrelated families with ARH. Three of the ARH alleles contained both mutations, as a result of an ancient recombination between ARH1 and ARH2. No regional clustering of the three mutant alleles within Sardinia was apparent. Furthermore, four Italians from the mainland with autosomal recessive hypercholesterolaemia were homozygous for ARH1. INTERPRETATION The small number, high frequency, and dispersed distribution of ARH mutations on Sardinia are consistent with these mutations being ancient and maintained in the Sardinian population because of geographic isolation.


Atherosclerosis | 2014

Lysosomal acid lipase deficiency – An under-recognized cause of dyslipidaemia and liver dysfunction

Željko Reiner; Ornella Guardamagna; Devaki Nair; Handrean Soran; Kees Hovingh; Stefano Bertolini; Simon A. Jones; Marijana Ćorić; Sebastiano Calandra; John A. Hamilton; Terence Eagleton; Emilio Ros

Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme.


Molecular and Cellular Biology | 2004

Transcriptional Regulation of Human CYP27 Integrates Retinoid, Peroxisome Proliferator-Activated Receptor, and Liver X Receptor Signaling in Macrophages

Attila Szanto; Szilvia Benko; Istvan Szatmari; Balint L. Balint; Ibolya Furtos; Ralph Rühl; Sándor Molnár; László Csiba; Rita Garuti; Sebastiano Calandra; Hanna Larsson; Ulf Diczfalusy; Laszlo Nagy

ABSTRACT Cholesterol uptake and efflux are key metabolic processes associated with macrophage physiology and atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha (LXRα) have been linked to the regulation of these processes. It remains to be identified how activation of these receptors is connected and regulated by endogenous lipid molecules. We identified CYP27, a p450 enzyme, as a link between retinoid, PPARγ, and LXR signaling. We show that the human CYP27 gene is under coupled regulation by retinoids and ligands of PPARs via a PPAR-retinoic acid receptor response element in its promoter. Induction of the enzymes expression results in an increased level of 27-hydroxycholesterol and upregulation of LXR-mediated processes. Upregulated CYP27 activity also leads to LXR-independent elimination of CYP27 metabolites as an alternative means of cholesterol efflux. Moreover, human macrophage-rich atherosclerotic lesions have an increased level of retinoid-, PPARγ-, and LXR-regulated gene expression and also enhanced CYP27 levels. Our findings suggest that nuclear receptor-regulated CYP27 expression is likely to be a key integrator of retinoic acid receptor-PPARγ-LXR signaling, relying on natural ligands and contributing to lipid metabolism in macrophages.


Circulation | 2009

Functional Lecithin: Cholesterol Acyltransferase Is Not Required for Efficient Atheroprotection in Humans

Laura Calabresi; Damiano Baldassarre; Samuela Castelnuovo; Paola Conca; Letizia Bocchi; Chiara Candini; Beatrice Frigerio; Mauro Amato; Cesare R. Sirtori; Paola Alessandrini; Marcello Arca; Giuliano Boscutti; Luigi Cattin; Loreto Gesualdo; T. Sampietro; Gaetano Vaudo; Fabrizio Veglia; Sebastiano Calandra; Guido Franceschini

Background— Mutations in the LCAT gene cause lecithin:cholesterol acyltransferase (LCAT) deficiency, a very rare metabolic disorder with 2 hypoalphalipoproteinemia syndromes: classic familial LCAT deficiency (Online Mendelian Inheritance in Man No. 245900), characterized by complete lack of enzyme activity, and fish-eye disease (Online Mendelian Inheritance in Man No. 136120), with a partially defective enzyme. Theoretically, hypoalphalipoproteinemia cases with LCAT deficiency should be at increased cardiovascular risk because of high-density lipoprotein deficiency and defective reverse cholesterol transport. Methods and Results— The extent of preclinical atherosclerosis was assessed in 40 carriers of LCAT gene mutations from 13 Italian families and 80 healthy controls by measuring carotid intima-media thickness (IMT). The average and maximum IMT values in the carriers were 0.07 and 0.21 mm smaller than in controls (P=0.0003 and P=0.0027), respectively. Moreover, the inheritance of a mutated LCAT genotype had a remarkable gene-dose–dependent effect in reducing carotid IMT (P=0.0003 for average IMT; P=0.001 for maximum IMT). Finally, no significant difference in carotid IMT was found between carriers of LCAT gene mutations that cause total or partial LCAT deficiency (ie, familial LCAT deficiency or fish-eye disease). Conclusions— Genetically determined low LCAT activity in Italian families is not associated with enhanced preclinical atherosclerosis despite low high-density lipoprotein cholesterol levels. This finding challenges the notion that LCAT is required for effective atheroprotection and suggests that elevating LCAT expression or activity is not a promising therapeutic strategy to reduce cardiovascular risk.


European Journal of Clinical Investigation | 1971

Plasma Lecithin: Cholesterol Acyltransferase Activity in Liver Disease*

Sebastiano Calandra; M. J. Martin; N. McIntyre

Abstract. In liver disease the proportion of plasma cholesterol present in the form of ester is lower than that found in normal subjects. Recent work has suggested that a plasma enzyme, lecithin: cholesterol acyltransferase (LCAT), may be a major f actorin the physiological regulation of plasma cholesterol ester levels. In patients with a variety of hepatobiliary disorders LCAT activity was found to be reduced and a study of the effects of interaction between normal and jaundiced plasmas supported the hypothesis that the low LCAT activity was due mainly to a reduction in the plasma concentration of the enzyme.


Atherosclerosis | 2013

Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy

Stefano Bertolini; Livia Pisciotta; Claudio Rabacchi; Angelo B. Cefalù; Davide Noto; Tommaso Fasano; Alessio Signori; Raffaele Fresa; Maurizio Averna; Sebastiano Calandra

OBJECTIVE To determine the spectrum of gene mutations and the genotype-phenotype correlations in patients with Autosomal Dominant Hypercholesterolemia (ADH) identified in Italy. METHODS The resequencing of LDLR, PCSK9 genes and a selected region of APOB gene were conducted in 1018 index subjects clinically heterozygous ADH and in 52 patients clinically homozygous ADH. The analysis was also extended to 1008 family members of mutation positive subjects. RESULTS Mutations were detected in 832 individuals: 97.4% with LDLR mutations, 2.2% with APOB mutations and 0.36% with PCSK9 mutations. Among the patients with homozygous ADH, 51 were carriers of LDLR mutations and one was an LDLR/PCSK9 double heterozygote. We identified 237 LDLR mutations (45 not previously reported), 4 APOB and 3 PCSK9 mutations. The phenotypic characterization of 1769 LDLR mutation carriers (ADH-1) revealed that in both sexes independent predictors of the presence of tendon xanthomas were age, the quintiles of LDL cholesterol, the presence of coronary heart disease (CHD) and of receptor negative mutations. Independent predictors of CHD were male gender, age, the presence of arterial hypertension, smoking, tendon xanthomas, the scalar increase of LDL cholesterol and the scalar decrease of HDL cholesterol. We identified 13 LDLR mutation clusters, which allowed us to compare the phenotypic impact of different mutations. The LDL cholesterol raising potential of these mutations was found to vary over a wide range. CONCLUSIONS This study confirms the genetic and allelic heterogeneity of ADH and underscores that the variability in phenotypic expression of ADH-1 is greatly affected by the type of LDLR mutation.


Journal of Medical Genetics | 2014

Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations

Marta Futema; Vincent Plagnol; KaWah Li; Ros Whittall; H Andrew; W Neil; Mary Seed; Stefano Bertolini; Sebastiano Calandra; Olivier S. Descamps; Robert A. Hegele; Fredrik Karpe; Devaki Nair; Steve E. Humphries

Background Familial hypercholesterolaemia (FH) is an autosomal dominant disease of lipid metabolism, which leads to early coronary heart disease. Mutations in LDLR, APOB and PCSK9 can be detected in 80% of definite FH (DFH) patients. This study aimed to identify novel FH-causing genetic variants in patients with no detectable mutation. Methods and results Exomes of 125 unrelated DFH patients were sequenced, as part of the UK10K project. First, analysis of known FH genes identified 23 LDLR and two APOB mutations, and patients with explained causes of FH were excluded from further analysis. Second, common and rare variants in genes associated with low-density lipoprotein cholesterol (LDL-C) levels in genome-wide association study (GWAS) meta-analysis were examined. There was no clear rare variant association in LDL-C GWAS hits; however, there were 29 patients with a high LDL-C SNP score suggestive of polygenic hypercholesterolaemia. Finally, a gene-based burden test for an excess of rare (frequency <0.005) or novel variants in cases versus 1926 controls was performed, with variants with an unlikely functional effect (intronic, synonymous) filtered out. Conclusions No major novel locus for FH was detected, with no gene having a functional variant in more than three patients; however, an excess of novel variants was found in 18 genes, of which the strongest candidates included CH25H and INSIG2 (p<4.3×10−4 and p<3.7×10−3, respectively). This suggests that the genetic cause of FH in these unexplained cases is likely to be very heterogeneous, which complicates the diagnostic and novel gene discovery process.


The Journal of Pediatrics | 2009

The Type of LDLR Gene Mutation Predicts Cardiovascular Risk in Children with Familial Hypercholesterolemia

Ornella Guardamagna; Gabriella Restagno; Elio Rolfo; Cristina Pederiva; S. Martini; Francesca Abello; V. Baracco; Livia Pisciotta; Elisabetta Pino; Sebastiano Calandra; Stefano Bertolini

OBJECTIVE To ascertain whether the molecular characterization of a defect in the low-density lipoprotein (LDL) receptor gene (LDLR) in children with heterozygous familial hypercholesterolemia (heFH) identifies subjects at greater risk of developing premature coronary artery disease (pCAD) later in life. STUDY DESIGN We investigated 264 children with heFH from 201 families, along with 148 affected parents and 100 unaffected siblings. The lipid profile was assessed before any treatment was provided, and genotype analysis was performed to characterize LDLR defects. In a subgroup of children with heFH and controls, we measured aorta and carotid intima-media thickness (aIMT and cIMT). The prevalence of pCAD in parents and/or grandparents with heFH was recorded. RESULTS The children with heFH with a family history of pCAD had higher LDL cholesterol and apolipoprotein B levels and greater aIMT and cIMT than those with negative family history. Compared with carriers of LDLR-defective mutations, carriers of LDLR-negative mutations had a more severe phenotype, in terms of plasma lipid levels and IMT, and a higher prevalence of pCAD in first-degree relatives (36% vs 6.7%; P < .001). CONCLUSIONS The study of heFH in children, in which other risk factors for CAD play a minor role, allows early identification of those at increased risk for developing pCAD, who merit more stringent clinical control and early pharmacologic treatment.

Collaboration


Dive into the Sebastiano Calandra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrizia Tarugi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Cantafora

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Claudio Rabacchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Garuti

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge