Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Aubourg is active.

Publication


Featured researches published by Sébastien Aubourg.


Nature | 2007

The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla

Olivier Jaillon; Jean-Marc Aury; Benjamin Noel; Alberto Policriti; Christian Clepet; Alberto Casagrande; Nathalie Choisne; Sébastien Aubourg; Nicola Vitulo; Claire Jubin; Alessandro Vezzi; Fabrice Legeai; Philippe Hugueney; Corinne Dasilva; David S. Horner; Erica Mica; Delphine Jublot; Julie Poulain; Clémence Bruyère; Alain Billault; Béatrice Segurens; Michel Gouyvenoux; Edgardo Ugarte; Federica Cattonaro; Véronique Anthouard; Virginie Vico; Cristian Del Fabbro; Michael Alaux; Gabriele Di Gaspero; Vincent Dumas

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.


The Plant Cell | 2004

Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis

Claire Lurin; Charles Andrés; Sébastien Aubourg; Mohammed Bellaoui; Frédérique Bitton; Clémence Bruyère; Michel Caboche; Cédrig Debast; José M. Gualberto; Beate Hoffmann; Alain Lecharny; Monique Le Ret; Marie-Laure Martin-Magniette; Hakim Mireau; Nemo Peeters; Jean-Pierre Renou; Boris Szurek; Ludivine Taconnat; Ian Small

The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.


The EMBO Journal | 2011

Integrative epigenomic mapping defines four main chromatin states in Arabidopsis

François Roudier; Ikhlak Ahmed; Caroline Bérard; Alexis Sarazin; Tristan Mary-Huard; Sandra Cortijo; Daniel Bouyer; Erwann Caillieux; Evelyne Duvernois-Berthet; Liza Al-Shikhley; Laurène Giraut; Barbara Després; Stéphanie Drevensek; Fredy Barneche; Sandra Dèrozier; Véronique Brunaud; Sébastien Aubourg; Arp Schnittger; Chris Bowler; Marie-Laure Martin-Magniette; Stéphane Robin; Michel Caboche; Vincent Colot

Post‐translational modification of histones and DNA methylation are important components of chromatin‐level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin‐based regulatory mechanisms in plants.


The Plant Cell | 2005

Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops)

Nathalie Chantret; Jérôme Salse; François Sabot; Sadequr Rahman; Arnaud Bellec; Bastien Laubin; Ivan Dubois; Carole Dossat; Pierre Sourdille; Philippe Joudrier; Marie-Françoise Gautier; Laurence Cattolico; Michel Beckert; Sébastien Aubourg; Jean Weissenbach; Michel Caboche; M. Bernard; Philippe Leroy; Boulos Chalhoub

The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.


Molecular Genetics and Genomics | 2002

Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana

Sébastien Aubourg; Alain Lecharny; Jörg Bohlmann

Abstract. A family of 40 terpenoid synthase genes (AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes (AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family.


BMC Plant Biology | 2010

Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

Diane M. Martin; Sébastien Aubourg; Marina Schouwey; Laurent Daviet; Michel Schalk; Omid Toub; Steven T. Lund; Jörg Bohlmann

BackgroundTerpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions.ResultsWe present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation.ConclusionsThe highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family.


EMBO Reports | 2002

T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites

Véronique Brunaud; Sandrine Balzergue; Bertrand Dubreucq; Sébastien Aubourg; Franck Samson; Stéphanie Chauvin; Nicole Bechtold; Corinne Cruaud; Richard DeRose; Georges Pelletier; Loïc Lepiniec; Michel Caboche; Alain Lecharny

A statistical analysis of 9000 flanking sequence tags characterizing transferred DNA (T‐DNA) transformants in Arabidopsis sheds new light on T‐DNA insertion by illegitimate recombination. T‐DNA integration is favoured in plant DNA regions with an A‐T‐rich content. The formation of a short DNA duplex between the host DNA and the left end of the T‐DNA sets the frame for the recombination. The sequence immediately downstream of the plant A‐T‐rich region is the master element for setting up the DNA duplex, and deletions into the left end of the integrated T‐DNA depend on the location of a complementary sequence on the T‐DNA. Recombination at the right end of the T‐DNA with the host DNA involves another DNA duplex, 2–3 base pairs long, that preferentially includes a G close to the right end of the T‐DNA.


Plant Journal | 2008

Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5

Moussa Benhamed; Marie-Laure Martin-Magniette; Ludivine Taconnat; Frédérique Bitton; Caroline Servet; Rebecca De Clercq; Björn De Meyer; Caroline Buysschaert; Stephane Rombauts; Raimundo Villarroel; Sébastien Aubourg; Jim Beynon; Rishikesh P. Bhalerao; George Coupland; Wilhelm Gruissem; Frank L.H. Menke; Bernd Weisshaar; Jean-Pierre Renou; Dao-Xiu Zhou; Pierre Hilson

We have assembled approximately 20 000 Arabidopsis thaliana promoter regions, compatible with functional studies that require cloning and with microarray applications. The promoter fragments can be captured as modular entry clones (MultiSite Gateway format) via site-specific recombinational cloning, and transferred into vectors of choice to investigate transcriptional networks. The fragments can also be amplified by PCR and printed on glass arrays. In combination with immunoprecipitation of protein-DNA complexes (ChIP-chip), these arrays enable characterization of binding sites for chromatin-associated proteins or the extent of chromatin modifications at genome scale. The Arabidopsis histone acetyltransferase GCN5 associated with 40% of the tested promoters. At most sites, binding did not depend on the integrity of the GCN5 bromodomain. However, the presence of the bromodomain was necessary for binding to 11% of the promoter regions, and correlated with acetylation of lysine 14 of histone H3 in these promoters. Combined analysis of ChIP-chip and transcriptomic data indicated that binding of GCN5 does not strictly correlate with gene activation. GCN5 has previously been shown to be required for light-regulated gene expression and growth, and we found that GCN5 targets were enriched in early light-responsive genes. Thus, in addition to its transcriptional activation function, GCN5 may play an important role in priming activation of inducible genes under non-induced conditions.


Annual Review of Plant Biology | 2013

Plant Protein Interactomes

Pascal Braun; Sébastien Aubourg; Jelle Van Leene; Geert De Jaeger; Claire Lurin

Protein-protein interactions are a critical element of biological systems, and the analysis of interaction partners can provide valuable hints about unknown functions of a protein. In recent years, several large-scale protein interaction studies have begun to unravel the complex networks through which plant proteins exert their functions. Two major classes of experimental approaches are used for protein interaction mapping: analysis of direct interactions using binary methods such as yeast two-hybrid or split ubiquitin, and analysis of protein complexes through affinity purification followed by mass spectrometry. In addition, bioinformatics predictions can suggest interactions that have evaded detection by other methods or those of proteins that have not been investigated. Here we review the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks. We present experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large-scale plant interactome network maps.


Nature Genetics | 2017

High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development

Nicolas Daccord; Jean-Marc Celton; Gareth Linsmith; Claude Becker; Nathalie Choisne; Elio Schijlen; Henri van de Geest; Luca Bianco; Diego Micheletti; Riccardo Velasco; Erica A. Di Pierro; Jérôme Gouzy; Philippe Guérif; Hélène Muranty; Charles-Eric Durel; François Laurens; Yves Lespinasse; Sylvain Gaillard; Sébastien Aubourg; Hadi Quesneville; Detlef Weigel; Eric van de Weg; Michela Troggio; Etienne Bucher

Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.

Collaboration


Dive into the Sébastien Aubourg's collaboration.

Top Co-Authors

Avatar

Alain Lecharny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Véronique Brunaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michel Caboche

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Balzergue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Renou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rim Zaag

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Guichard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge