Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Blanquer is active.

Publication


Featured researches published by Sébastien Blanquer.


Acta Biomaterialia | 2012

Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)–poly(ethylene glycol)–poly(trimethylene carbonate) macromonomers and nanoclay particles☆

Shahriar Sharifi; Sébastien Blanquer; Theo G. van Kooten; Dirk W. Grijpma

Soft hydrogels with elasticity modulus values lower than 100kPa that are tough and biodegradable are of great interest in medicine and in tissue engineering applications. We have developed a series of soft hydrogel structures from different methacrylate-functionalized triblock copolymers of poly(ethylene glycol) (PEG) with poly(trimethylene carbonate) (PTMC) by photo-crosslinking aqueous solutions of the macromonomers in 2.5 and 5wt.% colloidal dispersions of clay nanoparticles (Laponite XLG). The length of the PTMC blocks of the macromonomers and the clay content determined the physicomechanical properties of the obtained hydrogels. While an increase in the PTMC block length in the macromonomers from 0.2 to 5kg/mol resulted in a decrease in the gel content, the addition of 5wt.% Laponite nanoclay to the crosslinking solution lead to very high gel contents of the hydrogels of more than 95%. The effect of PTMC block length on the mechanical properties of the hydrogels was not as pronounced, and soft gels with a compressive modulus of less than 15kPa and toughness values of 25kJm(-3) were obtained. However, the addition of 5wt.% Laponite nanoclay to the formulations considerably increased the compressive modulus and resilience of the hydrogels; swollen nanocomposite networks with compressive modulus and toughness values of up to 67kPa and 200kJm(-3), respectively, could then be obtained. The prepared hydrogels were shown to be enzymatically degradable by cholesterol esterase and by the action of macrophages. With an increase in PTMC block length in the hydrogels, the rates of mass loss increased, while the incorporated Laponite nanoclay suppressed degradation. Nanocomposite hydrogel structures with a designed gyroid pore network architecture were prepared by stereolithography. Furthermore, in the swollen state the porous gyroid structures were mechanically stable and the pore network remained fully open and interconnected.


Biomaterials | 2015

A combined biomaterial and cellular approach for annulus fibrosus rupture repair.

Tatiana Pirvu; Sébastien Blanquer; Lorin Michael Benneker; Dirk W. Grijpma; R.G. Richards; Mauro Alini; David Eglin; Sibylle Grad; Zhen Li

Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.


Advanced Drug Delivery Reviews | 2015

Delivery systems for the treatment of degenerated intervertebral discs

Sébastien Blanquer; Dirk W. Grijpma; Andreas A. Poot

The intervertebral disc (IVD) is the most avascular and acellular tissue in the body and therefore prone to degeneration. During IVD degeneration, the balance between anabolic and catabolic processes in the disc is deregulated, amongst others leading to alteration of extracellular matrix production, abnormal enzyme activities and production of pro-inflammatory substances like cytokines. The established treatment strategy for IVD degeneration consists of physiotherapy, pain medication by drug therapy and if necessary surgery. This approach, however, has shown limited success. Alternative strategies to increase and prolong the effects of bioactive agents and to reverse the process of IVD degeneration include the use of delivery systems for drugs, proteins, cells and genes. In view of the specific anatomy and physiology of the IVD and depending on the strategy of the therapy, different delivery systems have been developed which are reviewed in this article.


Journal of Applied Biomaterials & Functional Materials | 2012

Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering

Sébastien Blanquer; Shahriar Sharifi; Dirk W. Grijpma

Purpose Intervertebral disk degeneration is the main cause of chronic back pain. Disk degeneration often leads to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP), which compresses the nerves. Current treatment involves removing the herniated NP and suturing the damaged AF tissue. This surgical approach has several drawbacks. In this study, we designed a biodegradable AF closure system comprising a tissue engineering scaffold, a supporting membrane and an adhesive material, to not only restore the function of the herniated disc but also to promote tissue regeneration. Materials and Methods Porous scaffolds with precisely defined architectures were built by stereolithography using resins based on poly(trimethylene carbonate) (PTMC) macromers functionalized with methacrylate endgroups. In addition, a porous photo-cross-linked PTMC membrane was developed that can be used to keep the scaffold in place in the AF tissue. Results After synthesis and characterization, the components of the implant are glued together and to the AF tissue using a diisocyanate glue based on polyethylene glycol–PTMC triblock copolymers. The adhesion strengths of the materials to each other and to AF tissue were determined in lap-shear tests. Conclusions This study showed that a device for AF tissue engineering can be prepared from PTMC-based scaffolds, membranes and glues.


Advanced Science | 2017

Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation

Maike Werner; Sébastien Blanquer; Suvi Haimi; Gabriela Korus; John W. C. Dunlop; Georg N. Duda; Dirk W. Grijpma; Ansgar Petersen

Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well‐defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward‐lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin‐A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell‐instructive material parameter in the field of biomaterial‐guided tissue regeneration.


Acta Biomaterialia | 2016

Mechanical restoration and failure analyses of a hydrogel and scaffold composite strategy for annulus fibrosus repair

Rose G. Long; Alexander Bürki; Philippe Zysset; David Eglin; Dirk W. Grijpma; Sébastien Blanquer; Andrew C. Hecht; James C. Iatridis

UNLABELLED Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. STATEMENT OF SIGNIFICANCE Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.


Macromolecular Bioscience | 2012

Permanent Polymer Coating for in vivo MRI Visualization of Tissue Reinforcement Prostheses

Olivier Guillaume; Sébastien Blanquer; Vincent Letouzey; Arnaud Cornille; S. Huberlant; Laurent Lemaire; Florence Franconi; Renaud de Tayrac; Jean Coudane; Xavier Garric

The clinical advantage of MRI visualization of prostheses in soft tissue prolapses is very appealing as over 1,000000 MRI-transparent synthetic meshes are implanted annually, and postoperative complications such as mesh shrinkage and migration are frequent. Here, the synthesis of a new material composed of a DTPA-Gd complex grafted onto a backbone of PMA via a covalent bond is described (DTPA-Gd-PMA). This new polymer is sprayed onto meshes and gives an MR signal for a long period without any significant release of Gd. In vitro cytocompatibility tests on fibroblasts show limited cytotoxicity. Microscopic investigations indicate that vital cells rapidly colonize the material. Finally, coated meshes implanted in rats are easily recognizable using an MR imaging system.


Macromolecular Rapid Communications | 2011

From Polyesters to Polyamides Via ON Acyl Migration: An Original Multi‐Transfer Reaction

Julien Tailhades; Sébastien Blanquer; Benjamin Nottelet; Jean Coudane; Gilles Subra; Pascal Verdié; Etienne Schacht; Jean Martinez; Muriel Amblard

A new strategy for the synthesis of polyamides from polyesters of hydroxyl-containing amino acids using a multi O-N acyl transfer reaction was developed. This original approach allowed the synthesis of three generations of polymers from the same starting monomer. The polymerization of N-benzyloxycarbonyl-serine and its γ-homologated derivative provided the Z-protected polyesters; then the water-soluble polycationic polyesters were obtained by removal of the Z-protecting group; and finally the polyamides were obtained by a base-induced multi O-N acyl transfer, both in aqueous or organic medium. The key step transfer reaction was monitored by the disappearance and appearance of characteristic NMR proton signals and IR bands of polyesters and polyamides.


Biofabrication | 2017

Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds

Sébastien Blanquer; Maike Werner; Markus Hannula; Shahriar Sharifi; Guillaume Lajoinie; David Eglin; Jari Hyttinen; André A. Poot; Dirk W. Grijpma

Reproduction of the anatomical structures and functions of tissues using cells and designed 3D scaffolds is an ongoing challenge. For this, scaffolds with appropriate biomorphic surfaces promoting cell attachment, proliferation and differentiation are needed. In this study, eight triply-periodic minimal surface (TPMS)-based scaffolds were designed using specific trigonometric equations, providing the same porosity and the same number of unit cells, while presenting different surface curvatures. The scaffolds were fabricated by stereolithography using a photocurable resin based on the biocompatible, biodegradable and rubber-like material, poly(trimethylene carbonate) (PTMC). A numerical approach was developed to calculate the surface curvature distributions of the TPMS architectures. Moreover, the scaffolds were characterized by scanning electron microscopy, micro-computed tomography and water permeability measurements. These original scaffold architectures will be helpful to decipher the biofunctional role of the surface curvature of scaffolds intended for tissue engineering applications.


Clinical Hemorheology and Microcirculation | 2015

μCT based assessment of mechanical deformation of designed PTMC scaffolds

Nathaniel Narra; Sébastien Blanquer; Suvi Haimi; Dirk W. Grijpma; Jari Hyttinen

Abstract BACKGROUND: Advances in rapid-prototyping and 3D printing technologies have enhanced the possibilities in preparing designed architectures for tissue engineering applications. A major advantage in custom designing is the ability to create structures with desired mechanical properties. While the behaviour of a designed scaffold can be simulated using bulk material properties, it is important to verify the behaviour of a printed scaffold at the microstructure level. OBJECTIVE: In this study we present an effective method in validating the mechanical behaviour of designed scaffolds using a μCT with an in-situ mechanical deformation device. METHODS: The scaffolds were prepared from biodegradable poly(trimethylene carbonate) (PTMC) by stereolithography and images obtained using a high-resolution μCT with 12.25μm isometric voxels. The data was processed (filtering, segmentation) and analysed (surface generation, registration) to extract relevant deformation features. RESULTS: The computed local deformation fields, calculated at sub-pore resolutions, displayed expected linear behaviour within the scaffold along the compressions axis. On planes perpendicular to this axis, the deformations varied by 150– 200μm. CONCLUSIONS: μCT based imaging with in-situ deformation provides a vital tool in validating the design parameters of printed scaffolds. Deformation fields obtained from micro-tomographic image volumes can serve to corroborate the simulated ideal design with the realized product.

Collaboration


Dive into the Sébastien Blanquer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahriar Sharifi

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Coudane

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

David Eglin

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maike Werner

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Letouzey

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Xavier Garric

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge