Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Brier is active.

Publication


Featured researches published by Sébastien Brier.


Nature | 2017

Structure and allosteric inhibition of excitatory amino acid transporter 1

Juan Carlos Canul-Tec; Reda Assal; Erica Cirri; Pierre Legrand; Sébastien Brier; Julia Chamot-Rooke; Nicolas Reyes

Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of their functions is associated to neurodegenerative disorders and cancer. Here we present the first crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures show novel architectural features of the human transporters, including intra- and extracellular domains with potential roles in transport function, as well as regulation by lipids and post-translational modifications. The coordination of the inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry, reveal an allosteric mechanism of inhibition, whereby the transporter is locked in the outward-facing states of the transport cycle. Our results provide unprecedented insights into the molecular mechanisms of function and pharmacology of human SLC1 transporters.


Scientific Reports | 2015

Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion

Darragh P. O’Brien; Belén Hernández; Dominique M. Durand; Véronique Hourdel; Ana-Cristina Sotomayor-Pérez; Patrice Vachette; Mahmoud Ghomi; Julia Chamot-Rooke; Daniel Ladant; Sébastien Brier; Alexandre Chenal

Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins.


Journal of Biological Chemistry | 2010

Mapping Surface Accessibility of the C1r/C1s Tetramer by Chemical Modification and Mass Spectrometry Provides New Insights into Assembly of the Human C1 Complex

Sébastien Brier; Delphine Pflieger; Maxime Le Mignon; Isabelle Bally; Christine Gaboriaud; Gérard J. Arlaud; Régis Daniel

C1, the complex that triggers the classic pathway of complement, is a 790-kDa assembly resulting from association of a recognition protein C1q with a Ca2+-dependent tetramer comprising two copies of the proteases C1r and C1s. Early structural investigations have shown that the extended C1s-C1r-C1r-C1s tetramer folds into a compact conformation in C1. Recent site-directed mutagenesis studies have identified the C1q-binding sites in C1r and C1s and led to a three-dimensional model of the C1 complex (Bally, I., Rossi, V., Lunardi, T., Thielens, N. M., Gaboriaud, C., and Arlaud, G. J. (2009) J. Biol. Chem. 284, 19340–19348). In this study, we have used a mass spectrometry-based strategy involving a label-free semi-quantitative analysis of protein samples to gain new structural insights into C1 assembly. Using a stable chemical modification, we have compared the accessibility of the lysine residues in the isolated tetramer and in C1. The labeling data account for 51 of the 73 lysine residues of C1r and C1s. They strongly support the hypothesis that both C1s CUB1-EGF-CUB2 interaction domains, which are distant in the free tetramer, associate with each other in the C1 complex. This analysis also provides the first experimental evidence that, in the proenzyme form of C1, the C1s serine protease domain is partly positioned inside the C1q cone and yields precise information about its orientation in the complex. These results provide further structural insights into the architecture of the C1 complex, allowing significant improvement of our current C1 model.


PLOS Pathogens | 2016

Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA.

Alessia Liguori; Enrico Malito; Paola Lo Surdo; Luca Fagnocchi; Francesca Cantini; Andreas F. Haag; Sébastien Brier; Mariagrazia Pizza; Isabel Delany; Matthew J. Bottomley

Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of ‘conformational selection’ by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in many MarR family proteins, and (iv) four residues (His7, Ser9, Asn11 and Phe25), which are involved in binding 4-HPA, and were confirmed in vitro to have key roles in the regulatory mechanism in bacteria. Overall, this study deepens our molecular understanding of the sophisticated regulatory mechanisms of the expression of nadA and other genes governed by NadR, dependent on interactions with niche-specific signal molecules that may play important roles during meningococcal pathogenesis.


Bioinformatics | 2016

MEMHDX: an interactive tool to expedite the statistical validation and visualization of large HDX-MS datasets

Véronique Hourdel; Stevenn Volant; Darragh P. O'Brien; Alexandre Chenal; Julia Chamot-Rooke; Marie-Agnès Dillies; Sébastien Brier

Motivation: With the continued improvement of requisite mass spectrometers and UHPLC systems, Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) workflows are rapidly evolving towards the investigation of more challenging biological systems, including large protein complexes and membrane proteins. The analysis of such extensive systems results in very large HDX-MS datasets for which specific analysis tools are required to speed up data validation and interpretation. Results: We introduce a web application and a new R-package named ‘MEMHDX’ to help users analyze, validate and visualize large HDX-MS datasets. MEMHDX is composed of two elements. A statistical tool aids in the validation of the results by applying a mixed-effects model for each peptide, in each experimental condition, and at each time point, taking into account the time dependency of the HDX reaction and number of independent replicates. Two adjusted P-values are generated per peptide, one for the ‘Change in dynamics’ and one for the ‘Magnitude of ΔD’, and are used to classify the data by means of a ‘Logit’ representation. A user-friendly interface developed with Shiny by RStudio facilitates the use of the package. This interactive tool allows the user to easily and rapidly validate, visualize and compare the relative deuterium incorporation on the amino acid sequence and 3D structure, providing both spatial and temporal information. Availability and Implementation: MEMHDX is freely available as a web tool at the project home page http://memhdx.c3bi.pasteur.fr Contact: [email protected] or [email protected] Supplementary information: Supplementary data is available at Bioinformatics online.


Current Allergy and Asthma Reports | 2016

Proteomics for Allergy: from Proteins to the Patients

Emmanuel Nony; Maxime Le Mignon; Sébastien Brier; Armelle Martelet; Philippe Moingeon

Proteomics encompasses a variety of approaches unraveling both the structural features, post-translational modifications, and abundance of proteins. As of today, proteomic studies have shed light on the primary structure of about 850 allergens, enabling the design of microarrays for improved molecular diagnosis. Proteomic methods including mass spectrometry allow as well to investigate protein-protein interactions, thus yielding precise information on critical epitopes on the surface of allergens. Mass spectrometry is now being applied to the unambiguous identification, characterization, and comprehensive quantification of allergens in a variety of matrices, as diverse as food samples and allergen immunotherapy drug products. As such, it represents a method of choice for quality testing of allergen immunotherapy products.


Biotechnology and Applied Biochemistry | 2018

SEC‐SAXS and HDX‐MS: A powerful combination. The case of the calcium‐binding domain of a bacterial toxin

Darragh P. O'Brien; Sébastien Brier; Daniel Ladant; D. Durand; Alexandre Chenal; Patrice Vachette

Small‐angle X‐ray scattering (SAXS) is a relatively simple experimental technique that provides information on the global conformation of macromolecules in solution, be they fully structured, partially, or extensively unfolded. Size exclusion chromatography in line with a SAXS measuring cell considerably improves the monodispersity and ideality of solutions, the two main requirements of a “good” SAXS sample. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX‐MS) offers a wealth of information regarding the solvent accessibility at the local (peptide) level. It constitutes a sensitive probe of local flexibility and, more generally, of structural dynamics. The combination of both approaches presented here is very powerful, as illustrated by the case of RD, a calcium‐binding protein that is part of a bacterial virulence factor.


Journal of Biological Chemistry | 2017

Prepore Stability Controls Productive Folding of the BAM-independent Multimeric Outer Membrane Secretin PulD

Ingrid Guilvout; Sébastien Brier; Mohamed Chami; Véronique Hourdel; Olivera Francetic; Anthony P. Pugsley; Julia Chamot-Rooke; Gerard H. M. Huysmans

Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4–5 kJ/mol/protomer in the N3 domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy. Formation of native PulD-multimers by mixing protomers that differ in N3 domain stability, suggested that the N3 domain forms a thermodynamic seal onto the prepore. This highlights the role of modest free energy changes in the folding of pre-integration forms of a hyperstable outer membrane complex and reveals a key driving force for assembly independently of the β-barrel assembly machinery.


PLOS Biology | 2017

Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis

Darragh P. O’Brien; D. Durand; Alexis Voegele; Véronique Hourdel; Marilyne Davi; Julia Chamot-Rooke; Patrice Vachette; Sébastien Brier; Daniel Ladant; Alexandre Chenal

Once translocated into the cytosol of target cells, the catalytic domain (AC) of the adenylate cyclase toxin (CyaA), a major virulence factor of Bordetella pertussis, is potently activated by binding calmodulin (CaM) to produce supraphysiological levels of cAMP, inducing cell death. Using a combination of small-angle X-ray scattering (SAXS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), and synchrotron radiation circular dichroism (SR-CD), we show that, in the absence of CaM, AC exhibits significant structural disorder, and a 75-residue-long stretch within AC undergoes a disorder-to-order transition upon CaM binding. Beyond this local folding, CaM binding induces long-range allosteric effects that stabilize the distant catalytic site, whilst preserving catalytic loop flexibility. We propose that the high enzymatic activity of AC is due to a tight balance between the CaM-induced decrease of structural flexibility around the catalytic site and the preservation of catalytic loop flexibility, allowing for fast substrate binding and product release. The CaM-induced dampening of AC conformational disorder is likely relevant to other CaM-activated enzymes.


Allergy | 2018

Characterization of epitope specificities of reference antibodies used for the quantification of the birch pollen allergen Bet v 1

Sébastien Brier; M. Le Mignon; Karine Jain; C. Lebrun; F. Peurois; C. Kellenberger; V. Bordas-Le Floch; L. Mascarell; Emmanuel Nony; Philippe Moingeon

Accurate allergen quantification is needed to document the consistency of allergen extracts used for immunotherapy. Herein, we characterize the epitope specificities of two monoclonal antibodies used in an ELISA for the quantification of the major birch pollen allergen Bet v 1, established as a reference by the BSP090 European project.

Collaboration


Dive into the Sébastien Brier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Durand

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge